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WP3 SCOPE

organise all activities that aim at
= data processing and workflow management
= integration of a priori knowledge on brain organization, e.g., brain
atlases
FAIR data management and provenance tracking
= source code
= protocol of workflows applied to compute derivatives of original data
sets
develop/provide computational environments to transform raw data into a
format geared towards advanced data analysis and modelling
= MR imaging
= neurophysiological recordings
= clinical information
aim for solutions that can be translated into clinical settings rather than being
constrained to dedicated research environments



WP3 ROLE IN PROJECT

e bridge platform development and neuroscience research

e critical link between clinical and modelling WPs

e provide software and knowledge infrastructure needed to work with data
from WP4 utilizing the HPC infrastructure from WP/



TASKS (1): DATA (PRE-)PROCESSING AND STANDARDIZATION

e 3.1 MRI Data processing, standardization and FAIRification (FZJ)

= development of an automated MRI (pre-)processing pipeline
(anatomical features, structual/functional connectome)

= enable response time matching those of clinical tests

= ncorporate data normalization using BIDS community standard

e 3.2 Electrophysiological data processing and analytics (UH)

m SEEG preprocessing
o electrode localization, white-matter referencing
o co-localization with individual MRI and multiresolution
parcellations
= M/EEG data preprocessing
o environmental, and physiological artefact removal
o co-registration with individual MRI
o inverse modeling to reconstruct cortical source time series



TASKS (2): DATA CURATION AND AGGREGATION

o 3.3 Atlases and harmonized spatial annotations (FZ)J)

= |ocalization of distinct, biologically meaningful regions for modeling

dynamics
= whole-brain atlas-based data compression (for connectomics and

computational efficiency)
= multimodal atlasing to provide a common reference
= whole-brain multiresolution parcellations applicable to MRI and

MEG/SEEG
e 3.4 Clinical data curation and processing (FRAUNHOFER)

= curation of structured clinical data and processing of unstructured

clinical information
m electronic healthcare records, including laboratory tests, clinical rating

scales, and physician notes
= diseases, medications, etc. represented by controlled vocabularies

= internationalization of terminologies



TASKS (3): METADATA DESIGN AND MANAGEMENT

e 3.5 Unified metadata annotations and data catalogues (UNIGE)

= terminologies and ontologies
o Protein-Ligand-Interaction Ontology (PLIO)
o Human Physiology Simulation Ontology (HUPSON)
o Alzheimer Disease Ontology (ADO)
o Parkinsonism Disease Ontology (PDON)
= terminology and ontology management system as core annotation
service for project data
= build for metadata evolution (e.g., coherent versioning)
= open-source tool (CTS2-compliant) to manage metadata catalogue

e 3.6 FAIR implementation on all modalities (FRAUNHOFER)

= FAIR data vs. privacy protection, subject identity protection
= homogeneous annotations based on shared semantics established in
Task 3.4

= harmonized metadata catalogue for use throughout the project



TASKS (4): ENABLE CAUSAL INFERENCE

e 3.7 Deconfounding brain/behaviour/genetics associations (INRIA)
= gccount for statistical confounds to improve validity of discovered
causal relationships
= comparison of two main deconfounding approaches:
o regression of nuisance variables
o resampling approach to create test datasets where the main
variable of interest is statistically independent from confounders
m estimation of causal directionality using "Mendelian Randomisation"”
from genotype, imaging variables (brain volume, amyloid load), cognitive
measures, and diagnoses



PROGRESS @ FZI

1. pipeline development and feature evaluation

2. data management and sharing logistics technology



PIPELINE DEVELOPMENT AND FEATURE EVALUATION

e Which features of brain structure and function are most informative and best
suitable for computational modeling?

e How can those features be optimally and most efficiently extracted from
empirical measurments?

e "closed-loop" evaluation of data processing pipeline design and
parameterization in the context of computational modeling

e work by Oleksandr Popovych, Tanos Manos, Sandra Diaz-Pier, Felix Hoffstaedter,
Jan Schreiber, Alexander Peyser from INM-7/FZJ, HHU Dusseldorf, SimLab
Neuroscience/FZJ, INM-1/FZ]J
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Hilbert transform of BOLD signal

BOLD RFMRI PHASE DYNAMICS FEATURE EXTRACTION

Rotations in the complex plane of analytic signal: Non-filtered (NF) BOLD

Rotations in the complex plane of analytic signal: Broad-band [0.01, 0.07] Hz filiered {(BF) BOLD
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Computation of valid features requires narrow-band spatial filtering



BRAIN ATLAS CHOICE AND GRANULARITY

Shaefer functional atlas Harvard-Oxford structural
(100, 200, 400, 600, 800, 1000 regions) (96 cortical regions)

Shaefer atlas (7 Networks) P 7
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Shaefer atlas (17 Networks)
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Desikan-Killiany anatomical Destrieux anatomical
(68 cortical regions) (148 cortical regions)
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Schaefer et al., Cereb. Cortex 28, 3095-3114 (2018) -

v

Zimmermann et al., Subject specificity of the correlation between
large-scale structural and functional connectivity Network
Neuroscience 3, 90-106 (2019)

Trade-off between model complexity/richness and computational efficiency



FUNCTIONAL CONNECTIVITY (FC) MODEL TEST CASE

Brain parcellation

Brain tractography

Coupling is based on the
empirical structural
connectivity (SC)
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Mean activity of brain regions
IS modeled by neuronal
(oscillatory) models

Honey et al., PNAS 106, 2035-2040 ( 2009)

Modeled brain dynamics:
simulated functional
connectivity (sim FC)

20 ' . = 6 . ..
Brain region #
Simulated FC is compared

with empirical FC (from
BOLD signals) and SC.
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FC MODEL EVALUATION ON DIFFERENT ATLAS CHOIGES
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Atlas choice and frequency band impact model performance.



SOLUTION FOR FAIR DECENTRALIZED DATA MANAGEMENT: DATALAD.ORG
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e manage the evolution of digital objects and yield FAIR resources

e Integrations: OpenNeuro management backend, CBRAIN data provider,
brainlife.io import

e Funding: CRCNS NSF/BMBF, HBP SGAS, NIH



(AUTUMATED) METALAD LOGISTICS

FAIR identifiers for =datasets,
file content and location

641‘

full metadata export and query
in superdatasets

independent of data and subdataset availablity
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% datalad --output-format json search \
bids.subject.sex:female bids.subject.age:24 bids.type:t1

{«2 "path”: "inputs/openneuro_ds@08/sub-15/anat/sub-15_t1w.nii.gz",

. . "metadata: {
{ z metadata format homogenization to JSON-LD "datalad”:{"dataset”: "b3101Fle-ebco-4bd5-a469-505baaa57387", |3,
. . - "annex":{"key": "d41d8cd98f00b204e9800998ecf8427e", | , ...
jUXtapOSE I’epl’esentatlon Of metadata plurallty } "url”:["http://openneuro.s3.amazonaws.com/ _R1.1.0/ 79", 133},

e transport solution for arbitrary metadata
e Metadata plurality: no need to decide on a single standard
e JSON-LD format (semantic graphs, but low technical threshold for use)

e supports aggregation from individual datasets into collections/catalogues
e independently extensible



"COMPLETE" PROVENANCE CAPTURE
<
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- for any local command

datalad run -m "Perform eye movement event detection"\
—-—input 'inputs/raw eyegaze/sub-*/beh/sub-*...tsv.gz'
--output 'sub-*' \

bash code/compute all.sh

- for any containerized app (can be tracked in the dataset too)

$ datalad containers-run -n nilearn \
-—-input 'inputs/mri aligned/sub-*/in bold3Tp2/sub-* task-avmovie run-* bold*' \
—-—output 'sub-*/LC timeseries run-*.csv' \

"bash -c¢ 'for sub in sub-*; do for run in run-1 ... run-8;
do python3 code/extract lc timeseries.py \$sub \$run; done; done'"

Complete capture of any input data, computational environment, code,
parameters, and outputs possible — without sacrificing modularity

Enables enigma-style computing — analyze data that you don't have!



WP3 —Task 3
UNIGE



UNIGE — Duties in WP3 - Task 3

Pre-process and validation of SEEG dataset

Preparation of SEEG cohort in BIDS format (bids-ieeg standard) and
validation
3. Studying temporal dynamics in non-demented adults exploiting

high-quality intracerebral recordings —i.e. SEEG

e Contribute to VBC: characterization of complex temporal dynamics in
“healthy” adults to inform model parametrization



StereoEEG — a brief introduction

Deep brain recording technique developed at Saint
Anne Hospital, Paris by Bancaud and Talairach 1985.

It is based on rigorous hypotheses about anatomo-

electro-clinical correlations, and requires a
comprehensive and multidisciplinary complex
approach.

Alternative to ECoG requires the use of grids
electrodes placed directly onto the cortex

... SEEG for research purposes?
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Phase synchrony in the human brain

1. Appropriate coverage of edges
in Schaefer and Yeo7 atlases
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2. Spectral profiles of phase synch show
significant coupling at large distances ( >
10 cm) and up to high-gamma (> 200 Hz)
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3. Phase-synchronization profiles are
distinct between cortical layers
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. But these don’t tell us much about

dynamics ...

And there are now compelling
evidences that functional
connectomes are state dependent



3. Temporal dynamics in SEEG

* Aims: study temporal dynamics in large-scale
brain networks

... Is there a preferred time-lag for measured
static PLV between cortical areas ?

* Methods:

* time-window phase locking value between
channel pairs. We used time-window where
phase is stable (i.e. flat Instantaneous frequency)
for both channels.

* Compute angles of complex PLV in each time
window.

* Test against surrogates (time-rotated and mixed)
that maintained same Pairwise Phase
Consistency (as non-biased phase synchrony
estimate) to mimic zero-phased “volume-
conduction”-like activity
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3. Temporal dynamics in SEEG

1. Phase difference distributions 2. skewed mixing coeff. 3. Phase lagged coupling is a wide-
are distribution with large values spread phenomena => significant
zero/near-zero phase coupling that is

e different from volume conduction
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2. BIDS-IEEG and code sharing

* Data:

* from 11 subjects have been prepared to comply to bids-ieeg standard and all
subsequent analyses (i.e. UNIGE-task3) have been performed according to
rules defined in the latest bids-ieeg (planning to add the whole cohort shortly)

* Phaselag dyamics connectomes have been saved in numpy/cloudpickle
format together with analyses parameters metadata (json format)

e Code:

* that produces the temporal dynamics has been completely re-written in
python (crosspy) alogn with anatomical co-localisation to Schaefer



progress ‘

Helsinki-team objectives and

UNIVERSITY OF HELSINKI
* Electrophysiological “validation data” for VBC modelling

* Validation data = numbers to guide model construction and
constrain model dynamics s

* 5 K

* K %

* Initially planned: standard quantifiers of criticality (DFA, avalanche European
exponents) and connectivity (phase and amplitude coupling) -
* Ongoing developments:
* Expansion of criticality to include bistable dynamics
* Expansion of within-frequency connectivity to true cross-
frequency coupling
* Novel temporal micro-scale perspective into phase dynamics
and coupling



Validation-data in M12 deliverable

Connectome-level:

* Static connectomes of phase coupling (PLV, wPLI)

* Static connectomes of amplitude coupling (CC, oCC)

* Static connectomes of phase and time lags

* Dynamic connectomes of phase coupling (PLV, wPLI in fixed time windows)
and/or Burst-based phase-locking-intervals connectomes

Node-level:
* LRTC estimates with DFA (maybe bistability)
* Phase autocorrelation functions? Burst/Transition statistics

Whole-brain-level:

* Avalanche scaling exponents / distributions

* Avalanche point-process time series

* Graph-strength and module-strength time series



“Classical” critical synchronization dynamics

O Super-Critical

Wi

S OCritical \Q'Q e Q;'\’Q
> Critical &
2 3 o~
E WJWMMWW T k”' M ! " (l’l 1 N A T Hw 0.8 1
S O Sub-Critical - 08
S
%‘ s 07 9
>
06 R
0 05

01 02 03 04 05 06

Control parameter
(connectivity)



Expansion to include bistable dynamics

Synchrony (r)
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Bistable dynamics: theoretical basis in sub-critical Hopf bifurcation

The fGn and BiS critical processes can be
explained using the canonical Hopf
bifurcation (Freyer et al., 2012):
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parameter dependent noise
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ii. Super-critical bifurcation produces gradual, one- (i)

attractor dynamics, i.e., fGn fluctations (Palva & o2l
Palva, 2018) 1

* Sub-critical bifurcation: the limit cycle occurs before the loss of stability of the fix point
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@ Overlapping of critical regime and BiS — model
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SEEG (MFG)

MEG(Vis)
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Bistable human brain dynamics in MEG and SEEG
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7T5Hz

.-nl.\-l'dMwJ'\JIIARuJI-J.'\Jﬂ N PR N

1 min

|

T

3 seconds

.EJ.JLMW.L.-..JKL AJ)M " _.A..I..A-L‘Jajlku.«.\ W W ‘ ) "

""‘W W‘W*’“’.WM@

SEEG

SEEG

LRTC

LRTC

2 4 8 15 29 45 65 90135185

2 4 8 15 29 45 65 90 135185
Frequency (Hz)

BiS

BiS

"2 4 8 15 29 45 65 90 135185

6.0

2 4 8 15 29 45 65 90 135185
Frequency (Hz)




“Micro-scale” oscillation phase dynamics

Real part

~7.5 Hz oscillations
in SEEG

Phase




“Micro-scale” oscillation phase dynamics

Real part
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Phase autocorrelations within and between bursts
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Thank you!

* Helsinki team

Satu & Matias Palva

Sheng Wang (criticality and bistability)

Felix Siebenhihner (connectivity and cross-frequency coupling)

Vladislav Myrov (local and network synchronization dynamics)
Ehtasham Raja (starting 16.9.)



