multivariate pattern analysis with Python
PyMVPA eases pattern classification analyses of large datasets, with an accent on neuroimaging. It provides high-level abstraction of typical processing steps (e.g. data preparation, classification, feature selection, generalization testing), a number of implementations of some popular algorithms (e.g. kNN, GNB, Ridge Regressions, Sparse Multinomial Logistic Regression), and bindings to external machine learning libraries (libsvm, shogun).
While it is not limited to neuroimaging data (e.g. fMRI, or EEG) it is eminently suited for such datasets.
Related packages: python-mvpa-doc, python-mvpa-lib
Version control system available: Browse sources
Distribution | Base version | Our version | Architectures |
---|---|---|---|
Debian GNU/Linux 6.0 (squeeze) | 0.4.5~dev23-2 | 0.4.8-1~nd60+1 | i386, amd64, sparc |
Debian GNU/Linux 7.0 (wheezy) | 0.4.8-1 | 0.4.8-1~nd70+1 | i386, amd64, sparc |
Debian GNU/Linux 8.0 (jessie) | 0.4.8-1~nd70+1 | i386, amd64, sparc | |
Debian unstable (sid) | 0.4.8-3 | 0.4.8-1~nd+1 | i386, amd64, sparc |
Ubuntu 10.04 LTS “Lucid Lynx” (lucid) | 0.4.3-2 | 0.4.8-1~nd10.04+1 | i386, amd64, sparc |
Ubuntu 12.04 LTS “Precise Pangolin” (precise) | 0.4.7-2ubuntu1 | 0.4.8-1~nd11.10+1+nd12.04+1 | i386, amd64, sparc |
Ubuntu 14.04 “Trusty Tahr” (trusty) | 0.4.8-3 | ||
Ubuntu 14.10 “Utopic Unicorn” (utopic) | 0.4.8-3 | ||
Ubuntu 15.04 “Vivid Vervet” (vivid) | 0.4.8-3 |