python-mlpy-doc

documention and examples for mlpy


mlpy provides high level procedures that support, with few lines of code, the design of rich Data Analysis Protocols (DAPs) for preprocessing, clustering, predictive classification and feature selection. Methods are available for feature weighting and ranking, data resampling, error evaluation and experiment landscaping.

This package provides user documentation for mlpy in various formats (HTML, PDF).

Related packages: python-mlpy, python-mlpy-lib


Advanced user information

Version control system available: Browse sources

Package availability chart
Distribution Base version Our version Architectures
Debian GNU/Linux 6.0 (squeeze) 2.2.0~dfsg1-2 2.2.0~dfsg1-1~squeeze.nd1 i386, amd64, sparc
Debian GNU/Linux 7.0 (wheezy) 2.2.0~dfsg1-2    
Debian GNU/Linux 8.0 (jessie) 2.2.0~dfsg1-2.1    
Debian testing (stretch) 2.2.0~dfsg1-2.1    
Debian unstable (sid) 2.2.0~dfsg1-2.1    
Ubuntu 10.04 LTS “Lucid Lynx” (lucid) 2.1.0~dfsg1-2 2.2.0~dfsg1-1~lucid.nd1 i386, amd64
Ubuntu 12.04 LTS “Precise Pangolin” (precise) 2.2.0~dfsg1-2build2    
Ubuntu 14.04 “Trusty Tahr” (trusty) 2.2.0~dfsg1-2.1    
Ubuntu 14.10 “Utopic Unicorn” (utopic) 2.2.0~dfsg1-2.1    
Ubuntu 15.04 “Vivid Vervet” (vivid) 2.2.0~dfsg1-2.1    
The source code for this portal is licensed under the GPL-3 and is available on git.debian.org.