
The handbook 0.12.0+519.g04985082

Introduction • Advanced topics • Use cases

ADINA WAGNER & MICHAEL HANKE

with

Laura Waite, Kyle Meyer, Marisa Heckner,
Benjamin Poldrack, Yaroslav Halchenko,
Chris Markiewicz, Pattarawat Chormai,
Lisa N. Mochalski, Lisa Wiersch, Jean-Baptiste Poline,
Nevena Kraljevic, Alex Waite, Lya K. Paas,
Niels Reuter, Peter Vavra, Tobias Kadelka,
Peer Herholz, Alexandre Hutton, Sarah Oliveira,
Dorian Pustina, Hamzah Hamid Baagil,
Tristan Glatard, Giulia Ippoliti, Christian Mönch

CONTENTS

I Introduction 1

1 A brief overview of DataLad 2
1.1 On Data . 2
1.2 The DataLad Philosophy . 3

2 How to use the handbook 5
2.1 For whom this book is written . 5
2.2 How to read this book . 5
2.3 Let’s get going! . 8

3 Installation and configuration 9
3.1 Install DataLad . 9
3.2 Initial configuration . 13

4 General prerequisites 15
4.1 The Command Line . 15
4.2 Command Syntax . 16
4.3 Basic Commands . 16
4.4 The Prompt . 17
4.5 Paths . 17
4.6 Text Editors . 18
4.7 Shells . 19
4.8 Tab Completion . 19

5 What you really need to know 21
5.1 DataLad datasets . 21
5.2 Simplified local version control workflows . 22
5.3 Consumption and collaboration . 22
5.4 Dataset linkage . 23
5.5 Full provenance capture and reproducibility . 23
5.6 Third party service integration . 24
5.7 Metadata handling . 24
5.8 All in all. 25

II Basics 26

6 DataLad datasets 28
6.1 Create a dataset . 28
6.2 Populate a dataset . 30

i

6.3 Modify content . 36
6.4 Install datasets . 39
6.5 Dataset nesting . 46
6.6 Summary . 49

7 DataLad, Run! 52
7.1 Keeping track . 52
7.2 DataLad, Re-Run! . 56
7.3 Input and output . 62
7.4 Clean desk . 69
7.5 Summary . 72

8 Under the hood: git-annex 74
8.1 Data safety . 75
8.2 Data integrity . 77

9 Collaboration 83
9.1 Looking without touching . 83
9.2 Where’s Waldo? . 92
9.3 Retrace and reenact . 94
9.4 Stay up to date . 96
9.5 Networking . 99
9.6 Summary . 106

10 Tuning datasets to your needs 108
10.1 DIY configurations . 108
10.2 More on DIY configurations . 114
10.3 Configurations to go . 120
10.4 Summary . 126

11 Make the most out of datasets 128
11.1 A Data Analysis Project with DataLad . 128
11.2 YODA: Best practices for data analyses in a dataset 129
11.3 YODA-compliant data analysis projects . 137
11.4 Summary . 155

12 One step further 157
12.1 More on Dataset nesting . 157
12.2 Computational reproducibility with software containers 161
12.3 Summary . 168

13 Third party infrastructure 170
13.1 Beyond shared infrastructure . 170
13.2 Dataset hosting on GIN . 179
13.3 Overview: Publishing datasets . 186
13.4 Summary . 190

14 Help yourself 192
14.1 What to do if things go wrong . 192
14.2 Miscellaneous file system operations . 193
14.3 Back and forth in time . 213
14.4 How to get help . 230
14.5 Gists . 237

ii

III Advanced 243

15 Advanced options 245
15.1 How to hide content from DataLad . 245
15.2 DataLad’s extensions . 248
15.3 DataLad’s result hooks . 250
15.4 Configure custom data access . 253
15.5 Remote Indexed Archives for dataset storage and backup 257

16 Go big or go home 274
16.1 Going big with DataLad . 274
16.2 Calculate in greater numbers . 278
16.3 Fixing up too-large datasets . 280
16.4 Summary . 282

IV Use cases 283

17 A typical collaborative data management workflow 285
17.1 The Challenge . 285
17.2 The DataLad Approach . 285
17.3 Step-by-Step . 286

18 Basic provenance tracking 289
18.1 The Challenge . 289
18.2 The DataLad Approach . 289
18.3 Step-by-Step . 289

19 Writing a reproducible paper 294
19.1 The Challenge . 294
19.2 The DataLad Approach . 295
19.3 Step-by-Step . 295
19.4 Automation with existing tools . 297

20 Student supervision in a research project 302
20.1 The Challenge . 302
20.2 The DataLad Approach . 303
20.3 Step-by-Step . 303

21 An automatically and computationally reproducible neuroimaging analysis from
scratch 307
21.1 The Challenge . 315
21.2 The DataLad Approach . 315
21.3 Step-by-Step . 316

22 Scaling up: Managing 80TB and 15 million files from the HCP release 339
22.1 The Challenge . 340
22.2 The DataLad Approach . 340
22.3 Step-by-Step . 341

23 Building a scalable data storage for scientific computing 352
23.1 The Challenge . 352
23.2 The DataLad approach . 353

iii

23.3 Step-by-step . 354

24 Using Globus as a data store for the Canadian Open Neuroscience Portal 358
24.1 The Challenge . 358
24.2 The Datalad Approach . 359
24.3 Step-by-Step . 360
24.4 Resources . 362

25 Contributing 363

V Appendix 364

A Glossary 365

B Frequently Asked Questions 371
B.1 What is Git? . 371
B.2 Where is Git’s “staging area” in DataLad datasets? 371
B.3 What is git-annex? . 371
B.4 What does DataLad add to Git and git-annex? . 372
B.5 Does DataLad host my data? . 372
B.6 How does GitHub relate to DataLad? . 373
B.7 What is the difference between a superdataset, a subdataset, and a dataset? . . . 373
B.8 How can I convert/import/transform an existing Git or git-annex repository into

a DataLad dataset? . 373
B.9 How can I cite DataLad? . 373
B.10 How can I help others get started with a shared dataset? 373
B.11 What is the difference between DataLad, Git LFS, and Flywheel? 377
B.12 DataLad version-controls my large files – great. But how much is saved in total? 377
B.13 How can I copy data out of a DataLad dataset? 378
B.14 Is there Python 2 support for DataLad? . 378
B.15 Is there a graphical user interface for DataLad? 378
B.16 How does DataLad interface with OpenNeuro? 378
B.17 What is the git-annex branch? . 378

C DataLad cheat sheet 380

D Contributing 382
D.1 Software setup . 382
D.2 Directives and demos . 383
D.3 Easy pull requests . 385
D.4 Desired structure of the book . 385
D.5 Acknowledging Contributors . 388

E Teaching with the DataLad Handbook 389
E.1 Use the handbook as a textbook/syllabus . 389
E.2 Use slides from the DataLad course . 389
E.3 Enhance talks and workshops with code demos 390
E.4 Use artwork used in the handbook . 390
E.5 Use the handbook as a template for your own teaching material 390

F Acknowledgements 391

iv

Index 392

v

Part I

Introduction

1

CHAPTER

ONE

A BRIEF OVERVIEW OF DATALAD

There can be numerous reasons why you ended up with this handbook in front of you – We do
not know who you are, or why you are here. You could have any background, any amount of
previous experience with DataLad, any individual application to use it for, any level of maturity
in your own mental concept of what DataLad is, and any motivational strength to dig into this
software.

All this brief section tries to do is to provide a minimal, abstract explanation of what DataLad
is, to give you, whoever you may be, some idea of what kind of tool you will learn to master in
this handbook, and to combat some prejudices or presumptions about DataLad one could have.

To make it short, DataLad is a software tool developed to aid with everything related to the
evolution of digital objects.

It is not only keeping track of code, it is not only keeping track of data, it is not only making
sharing, retrieving and linking data (and metadata) easy, but it assists with the combination
of all things necessary in the digital workflow of data and science.

As built-in, but optional features, DataLad yields FAIR resources – for example metadata and
provenance – and anything (or everything) can be easily shared should the user want this.

1.1 On Data

Everyone uses data. But once it exists, it does not suffice for most data to simply reside un-
changed in a single location for eternity.

Most data need to be shared – may it be a digital collection of family photos, a genomic
database between researchers around the world, or inventory lists of one company division
to another. Some data are public and should be accessible to everyone. Other data should
circulate only among a select few. There are various ways to distribute data, from emailing
files to sending physical storage media, from pointers to data locations on shared file systems
to using cloud computing or file hosting services. But what if there was an easy, generic way
of sharing and obtaining data?

Most data changes and evolves. A scientist extends a data collection or performs computations
on it. When applying for a new job, you update your personal CV. The documents required for
an audit need to comply to a new version of a common naming standard and the data files are
thus renamed. It may be easy to change data, but it can be difficult to revert a change, get
information on previous states of this data, or even simply find out how a piece of data came
into existence. This latter aspect, the provenance of data – information on its lineage and how
it came to be in its current state – is often key to understanding or establishing trust in data.
In collaborative fields that work with small-sized data such as Wikipedia pages or software

2

The DataLad Handbook, Release 0.12.0+519.g04985082

development, version control tools are established and indispensable. These tools allow users
to keep track of changes, view previous states, or restore older versions. How about a version
control system for data?

If data are shared as a copy of one state of its history, keeping all shared copies of this data
up-to-date once the original data changes or evolves is at best tedious, but likely impossible.
What about ways to easily update data and its shared copies?

The world is full of data. The public and private sector make use of it to understand, improve,
and innovate the complex world we live in. Currently, this process is far from optimal. In
order for society to get the most out of public data collections, public data need to be FAIR1:
Findable, Accessible, Interoperable, and Reusable. Apart from easy ways to share or update
shared copies of data, extensive metadata is required to identify data, link data collections
together, and make them findable and searchable in a standardized way. Can we also easily
attach metadata to our data and its evolution?

DataLad is a general purpose tool for managing everything involved in the digital workflow of
using data – regardless of the data’s type, content, size, location, generation, or development. It
provides functionality to share, search, obtain, and version control data in a distributed fashion,
and it aids managing the evolution of digital objects in a way that fulfills the FAIR2 principles.

1.2 The DataLad Philosophy

From a software point of view, DataLad is a command line tool, with an additional Python API
to use its features within your software and scripts. While being a general, multi-purpose tool,
there are also plenty of extensions that provide helpful, domain specific features that may very
well fit your precise use case.

But beyond software facts, DataLad is built up on a handful of principles. It is this underlying
philosophy that captures the spirit of what DataLad is, and here is a brief overview on it.

1. DataLad only cares (knows) about two things: Datasets and files. A DataLad dataset
is a collection of files in folders. And a file is the smallest unit any dataset can contain.
Thus, a DataLad dataset has the same structure as any directory on your computer, and
DataLad itself can be conceptualized as a content-management system that operates on
the units of files. As most people in any field work with files on their computer, at its core,
DataLad is a completely domain-agnostic, general-purpose tool to manage data. You
can use it whether you have a PhD in Neuroscience and want to share one of the largest
whole brain MRI images in the world3, organize your private music library, keep track of
all cat memes4 on the internet, or anything else5.

2. A dataset is a Git repository. All features of the version control system Git also apply to
everything managed by DataLad – plus many more. If you do not know or use Git yet,
there is no need to panic – there is no necessity to learn all of Git to follow along in learn-
ing and using DataLad. You will experience much of Git working its magic underneath
the hood when you use DataLad, and will soon start to appreciate its features. Later, you
may want to know more on how DataLad uses Git as a fundamental layer and learn some
of Git.

1 https://www.go-fair.org/
2 https://www.go-fair.org/
3 https://github.com/datalad-datasets/bmmr-t1w-250um
4 https://www.diabloii.net/gallery/data/500/medium/moar6-cat.jpg
5 https://media.giphy.com/media/3o6YfXCehdioMXYbcs/giphy.gif

1.2. The DataLad Philosophy 3

https://www.go-fair.org/
https://www.go-fair.org/
https://github.com/datalad-datasets/bmmr-t1w-250um
https://github.com/datalad-datasets/bmmr-t1w-250um
https://www.diabloii.net/gallery/data/500/medium/moar6-cat.jpg
https://media.giphy.com/media/3o6YfXCehdioMXYbcs/giphy.gif

The DataLad Handbook, Release 0.12.0+519.g04985082

3. A DataLad dataset can take care of managing and version controlling arbitrarily
large data. To do this, it has an optional annex for (large) file content. Thanks to this
annex, DataLad can easily track files that are many TB or PB in size (something that Git
could not do, and allows you to transform, work with, and restore previous versions of
data, while capturing all provenance, or share it with whomever you want). At the same
time, DataLad does all of the magic necessary to get this awesome feature to work quietly
in the background. The annex is set-up automatically, and the tool git-annex (https://
git-annex.branchable.com) manages it all underneath the hood. Worry-free large-content
data management? Check!

4. Deep in the core of DataLad lies the social principle to minimize custom procedures and
data structures. DataLad will not transform your files into something that only DataLad
or a specialized tool can read. A PDF file (or any other type of file) stays a PDF file
(or whatever other type of file it was) whether it is managed by DataLad or not. This
guarantees that users will not lose data or access if DataLad would vanish from their
system (or from the face of the Earth). Using DataLad thus does not require or generate
data structures that can only be used or read with DataLad – DataLad does not tie you
down, it liberates you.

5. Furthermore, DataLad is developed for complete decentralization. There is no required
central server or service necessary to use DataLad. In this way, no central infrastructure
needs to be maintained (or paid for). Your own laptop is the perfect place for your Data-
Lad project to live, as is your institution’s webserver, or any other common computational
infrastructure you might be using.

6. Simultaneously, though, DataLad aims to maximize the (re-)use of existing 3rd-party
data resources and infrastructure. Users can use existing central infrastructures should
they want to. DataLad works with any infrastructure from GitHub to Dropbox6, Figshare7

or institutional repositories, enabling users to harvest all of the advantages of their pre-
ferred infrastructure without tying anyone down to central services.

These principles hopefully gave you some idea of what to expect from DataLad, cleared some
worries that you might have had, and highlighted what DataLad is and what it is not. The
section What you really need to know (page 21) will give you a one-page summary of the func-
tionality and commands you will learn with this handbook. But before we get there, let’s get
ready to use DataLad. For this, the next section will show you how to use the handbook.

6 https://www.dropbox.com
7 https://figshare.com/

1.2. The DataLad Philosophy 4

https://git-annex.branchable.com
https://git-annex.branchable.com
https://www.dropbox.com
https://figshare.com/

CHAPTER

TWO

HOW TO USE THE HANDBOOK

2.1 For whom this book is written

The DataLad handbook is not the DataLad documentation, and it is also not an explanation of
the computational magic that happens in the background. Instead, it is a procedurally oriented,
hands-on crash-course that invites you to fire up your terminal and follow along.

If you are interested in learning how to use DataLad, this handbook is for you.

You do not need to be a programmer, computer scientist, or Linux-crank. If you have never
touched your computers shell before, you will be fine. No knowledge about Git or git-annex is
required or necessary. Regardless of your background and personal use cases for DataLad, the
handbook will show you the principles of DataLad, and from chapter 1 onwards you will be
using them.

2.2 How to read this book

First of all: be excited. DataLad can help you to manage your digital data workflow in various
ways, and in this book you will use many of them right from the start. There are many topics
you can explore, if you wish: local or collaborative workflows, reproducible analyses, data
publishing, and so on. If anything seems particularly exciting, you can go ahead, read it, and
do it. Therefore, grab your computer, and be ready to use it.

Every chapter will give you different challenges, starting from basic local workflows to more
advanced commands, and you will see your skills increase with each. While learning, it will be
easy to find use cases in your own work for the commands you come across.

As the handbook is to be a practical guide it includes as many hands-on examples as we can fit
into it. Code snippets look like this, and you should copy them into your own terminal to try
them out, but you can also modify them to fit your custom needs in your own use cases.
Note how we distinguish comments (#) from commands ($) and their output in the example
below (it shows the creation of a DataLad dataset):

this is a comment used for additional explanations. Anything preceded by $ is a command␣
→˓to try.
if the line starts with neither # nor $, its the output of a command
$ datalad create myfirstrepo
[INFO] Creating a new annex repo at /home/adina/DataLad-101
create(ok): /home/adina/DataLad-101 (dataset)

5

The DataLad Handbook, Release 0.12.0+519.g04985082

When copying code snippets into your own terminal, do not copy the leading $ – this only
indicates that the line is a command, and would lead to an error when executed.

The book is split into different parts. The upcoming chapters are the Basics that intend to show
you the core DataLad functionality and challenge you to use it. If you want to learn how to
use DataLad, it is recommended to start with this part and read it from start to end. In the
part use cases, you will find concrete examples of DataLad applications for general inspiration
– this is the second part of this book. If you want to get an overview of what is possible with
DataLad, this section will show you in a concise and non-technical manner. Pick whatever
you find interesting and disregard the rest. Afterwards, you might even consider Contributing
(page 382) to this book by sharing your own use case.

Note that many challenges can have straightforward and basic solutions, but a lot of additional
options or improvements are possible. Sometimes one could get lost in all of the available
DataLad functionality, or in some interesting backgrounds about a command. For this reason
we put all of the basics in plain sight, and those basics will let you master a given task and get
along comfortably. Having the basics will be your multi-purpose swiss army knife. But if you
want to have the special knowledge for a very peculiar type of problem set or that extra increase
in skill or understanding, you’ll have to do a detour into some of the “hidden” parts of the book:
When there are command options or explanations that go beyond basics and best practices, we
hide them in special book sections in order to not be too distracting for anyone only interested
in the basics. You can decide for yourself whether you want to check them out:

Find out more

Information on further commands
Sections like this contain content that goes beyond the basics necessary to complete a
challenge.

Note further that. . .

Note for Git users

DataLad uses Git and git-annex underneath the hood. Readers that are familiar with
these tools can find occasional notes on how a DataLad command links to a Git(-annex)
command or concept in boxes like this. There is, however, absolutely no knowledge of
Git or git-annex necessary to follow this book. You will, though, encounter Git commands
throughout the book when there is no better alternative, and executing those commands
will suffice to follow along.

Apart from core DataLad commands (introduced in the Basics part of this book), DataLad also
comes with many extensions and advanced commands not (yet) referenced in this handbook.
The development of many of these features is ongoing, and this handbook will incorporate all
DataLad commands and extensions once they are stable (that is, once the command(-structure)
is likely not to change anymore). If you are looking for a feature but cannot find it in this
handbook, please take a look at the documentation8, write9 or request10 an additional chapter
if you believe it is a worthwhile addition, or ask a question on Neurostars.org11 with a datalad
tag if you need help.

8 http://docs.datalad.org
9 http://handbook.datalad.org/en/latest/contributing.html

10 https://github.com/datalad-handbook/book/issues/new
11 https://neurostars.org/latest

2.2. How to read this book 6

http://docs.datalad.org
http://handbook.datalad.org/en/latest/contributing.html
https://github.com/datalad-handbook/book/issues/new
https://neurostars.org/latest

The DataLad Handbook, Release 0.12.0+519.g04985082

What you will learn in this book

This handbook will teach you simple, yet advanced principles of data management for repro-
ducible, comprehensible, transparent, and FAIR12 data projects. It does so with hands-on tool
use of DataLad and its underlying software, blended with clear explanations of relevant theo-
retical backgrounds whenever necessary, and by demonstrating organizational and procedural
guidelines and standards for data related projects on concrete examples.

You will learn how to create, consume, structure, share, publish, and use DataLad datasets:
modular, reusable components that can be version-controlled, linked, and that are able to cap-
ture and track full provenance of their contents, if used correctly.

At the end of the Basics section, these are some of the main things you will know how to do,
and understand why doing them is useful:

• Version-control data objects, regardless of size, keep track of and update (from) their
sources and shared copies, and capture the provenance of all data objects whether you
consume them from any source or create them yourself.

• Build up complete projects with data as independent, version-controlled, provenance-
tracked, and linked DataLad dataset(s) that allow distribution, modular reuse, and are
transparent both in their structure and their development to their current and future
states.

• Bind modular components into complete data analysis projects, and comply to procedural
and organizational principles that will help to create transparent and comprehensible
projects to ease collaboration and reproducibility.

• Share complete data objects, version-controlled as a whole, but including modular com-
ponents (such as data) in a way that preserves the history, provenance, and linkage of its
components.

After having read this handbook, you will find it easy to create, build up, and share intuitively
structured and version-controlled data projects that fulfill high standards for reproducibility
and FAIRness. You are able to decide for yourself how deep you want to delve into the DataLad
world based on your individual use cases, and with every section you will learn more about
state-of-the-art data management.

The storyline

Most of the sections in the upcoming chapter follow a continuous narrative. This narrative
aims to be as domain-agnostic and relatable as possible, but it also needs to be able to showcase
all of the principles and commands of DataLad. Therefore, together we will build up a DataLad
project for the fictional educational course DataLad-101.

Envision yourself in the last educational course you took or taught. You have probably created
some files with notes you took, a directory with slides or books for further reading, and a
place where you stored assignments and their solutions. This is what we will be doing as
well. This project will start with creating the necessary directory structures, populating them by
installing and creating several DataLad subdatasets, adding files and changing their content,
and executing simple scripts with input data to create results we can share and publish with
DataLad.

12 https://www.go-fair.org/fair-principles/

2.2. How to read this book 7

https://www.go-fair.org/fair-principles/

The DataLad Handbook, Release 0.12.0+519.g04985082

Find out more

I can not/do not want to code along. . .
If you do not want to follow along and only read, there is a showroom dataset of the
complete DataLad-101 project at github.com/datalad-handbook/DataLad-10113. This
dataset contains a separate branch for each section that introduced changes in the repos-
itory. The branches have the names of the sections, e.g., sct_create_a_dataset marks
the repository state at the end of the first section in the first chapter. You can checkout
a branch with git checkout <branch-name> to explore how the dataset looks like at the
end of a given section.
Note that this “public” dataset has a number of limitations, but it is useful for an overview
of the dataset history (and thus the actions performed throughout the “course”), a good
display of how many and what files will be present in the end of the book, and a demon-
stration of how subdatasets are linked.

13 https://github.com/datalad-handbook/DataLad-101

2.3 Let’s get going!

If you have DataLad installed, you can dive straight into chapter 1, Create a dataset (page 28).
For everyone new, there are the sections General prerequisites (page 15) as a minimal tutorial to
using the shell and Installation and configuration (page 9) to get your DataLad installation set
up.

2.3. Let’s get going! 8

https://github.com/datalad-handbook/DataLad-101

CHAPTER

THREE

INSTALLATION AND CONFIGURATION

Note: The handbook is written for DataLad version 0.12. If you already have DataLad installed
but are unsure whether it is the correct version, you can get information on your version of
DataLad by typing datalad --version into your terminal.

3.1 Install DataLad

The content in this chapter is largely based on the information given on the DataLad website14

and the DataLad documentation15.

Beyond DataLad itself, the installation requires Python, Git, git-annex, and potentially Python’s
package manager pip. The instructions below detail how to install each of these components
for different common operating systems. Please file an issue16 if you encounter problems.

Note that while these installation instructions will provide you with the core DataLad tool, many
extensions17 exist, and they need to be installed separately, if needed.

14 https://www.datalad.org/get_datalad.html
15 http://docs.datalad.org/en/latest/gettingstarted.html
16 https://github.com/datalad-handbook/book/issues/new
17 http://docs.datalad.org/en/latest/index.html#extension-packages

9

https://www.datalad.org/get_datalad.html
http://docs.datalad.org/en/latest/gettingstarted.html
https://github.com/datalad-handbook/book/issues/new
http://docs.datalad.org/en/latest/index.html#extension-packages

The DataLad Handbook, Release 0.12.0+519.g04985082

Linux: (Neuro)Debian, Ubuntu, and similar systems

For Debian-based operating systems, the most convenient installation method is to enable the
NeuroDebian18 repository. If you are on a Debian-based system, but do not have the Neu-
roDebian repository enabled, you should very much consider enabling it right now. The above
hyperlink links to a very easy instruction, and it only requires copy-pasting three lines of code.
Also, should you be confused by the name: enabling this repository will not do any harm if your
field is not neuroscience.

The following command installs DataLad and all of its software dependencies (including the
git-annex-standalone package):

$ sudo apt-get install datalad

The command above will also upgrade existing installations to the most recent available version.

Linux: CentOS, Redhat, Fedora, or similar systems

For CentOS, Redhat, Fedora, or similar distributions, there is an rpm git-annex-standalone avail-
able here19. Subsequently, DataLad can be installed via pip.

Alternatively, DataLad can be installed together with Git and git-annex via conda as outlined in
the section below.

Linux-machines with no root access (e.g. HPC systems)

If you want to install DataLad on a machine you do not have root access to, DataLad can be
installed with Miniconda20.

$ wget https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh
$ bash Miniconda3-latest-Linux-x86_64.sh
acknowledge license, keep everything at default
$ conda install -c conda-forge datalad

This should install Git, git-annex, and DataLad. The installer automatically configures the shell
to make conda-installed tools accessible, so no further configuration is necessary.

To update an existing installation with conda, use conda update datalad.

macOS/OSX

A common way to install packages on OS X is via the homebrew21 package manager. First,
install the homebrew package manager. Note that prior to the installation, Xcode22 needs to
be installed from the Mac App Store. Homebrew then can be installed using the command
following the instructions on their webpage (linked above).

Next, install git-annex23. The easiest way to do this is via brew:
18 http://neuro.debian.net/
19 https://git-annex.branchable.com/install/rpm_standalone/
20 https://docs.conda.io/en/latest/miniconda.html
21 https://brew.sh/
22 https://apps.apple.com/us/app/xcode/id497799835
23 https://git-annex.branchable.com/install/OSX/

3.1. Install DataLad 10

http://neuro.debian.net/
https://git-annex.branchable.com/install/rpm_standalone/
https://docs.conda.io/en/latest/miniconda.html
https://brew.sh/
https://apps.apple.com/us/app/xcode/id497799835
https://git-annex.branchable.com/install/OSX/

The DataLad Handbook, Release 0.12.0+519.g04985082

$ brew install git-annex

Once git-annex is available, DataLad can be installed via Pythons package manager pip as
described below. pip should already be installed by default. Recent macOS versions may have
pip3 instead of pip – use tab completion to find out which is installed. If it is pip3, run:

$ pip3 install datalad~=0.12

instead of the code snippets in the section below.

If this results in a permission denied error, install DataLad into a user’s home directory:

$ pip3 install --user datalad~=0.12

Find out more

If something is not on PATH. . .
Recent macOS versions may warn after installation that scripts were installed into loca-
tions that were not on PATH:

The script chardetect is installed in '/Users/awagner/Library/Python/3.7/bin' which␣
→˓is not on PATH.
Consider adding this directory to PATH or, if you prefer to suppress this warning,␣
→˓use --no-warn-script-location.

To fix this, add these paths to the $PATH environment variable. You can either do this
for your own user (1), or for all users of the computer (2) (requires using sudo and
authenticating with your computer’s password):

(1) Add something like (exchange the user name accordingly)

export PATH=$PATH:/Users/awagner/Library/Python/3.7/bin

to the profile file of your shell. If you use a bash shell, this may be ~/.bashrc or ~/.
bash_profile, if you are using a zsh shell, it may be ~/.zshrc or ~/.zprofile. Find out
which shell you are using by typing echo $SHELL into your terminal.
(2) Alternatively, configure it system-wide, i.e., for all users of your computer by adding
the the path /Users/awagner/Library/Python/3.7/bin to the file /etc/paths, e.g., with
the editor nano:

sudo nano /etc/paths

The contents of this file could look like this afterwards (the last line was added):

/usr/local/bin
/usr/bin
/bin
/usr/sbin
/sbin
/Users/awagner/Library/Python/3.7/bin

3.1. Install DataLad 11

The DataLad Handbook, Release 0.12.0+519.g04985082

Using Python’s package manager pip

DataLad can be installed via Python’s package manager pip24. pip comes with Python dis-
tributions, e.g., the Python distributions downloaded from python.org25. When downloading
Python, make sure to chose a recent Python 3 distribution.

If you have Python and pip set up, to automatically install DataLad and its software dependen-
cies, type

$ pip install datalad~=0.12

If this results in a permission denied error, install DataLad into a user’s home directory:

$ pip install --user datalad~=0.12

An existing installation can be upgraded with pip install -U datalad.

In addition, it is necessary to have a current version of git-annex installed which is not set up
automatically by using the pip method. You can find detailed installation instructions on how
to do this here26.

For Windows, extract the provided EXE installer into an existing Git installation directory (e.g.
C:\\Program Files\Git). If done this way, no PATH variable manipulation is necessary.

Windows 10

There are two ways to get DataLad on Windows 10: one is within Windows itself, the other is
using WSL, the Windows Subsystem for Linux. We recommend the former, but information on
how to use the WSL can be found here:

Using the Windows Subsystem for Linux

You can find out how to install the Windows Subsystem for Linux at ubuntu.com/wsl27. After-
wards, proceed with your installation as described in the installation instructions for Linux.

Note: Using Windows itself comes with some downsides. In general, DataLad can feel a bit
sluggish on Windows systems. This is because of a range of filesystem issues that also affect
the version control system Git itself, which DataLad relies on. The core functionality of DataLad
works, and you should be able to follow the contents covered in this book. You will notice,
however, that some Unix commands displayed in examples may not work, and that terminal
output can look different from what is displayed in the code examples of the book. If you
are a Windows user and want to help improve the handbook for Windows users, please get in
touch28.

Note: This installation method will get you a working version of DataLad, but be aware that
many Unix commands shown in the book examples will not work for you, and DataLad-related
output might look different from what we can show in this book. Please get in touch29 touch if
you want to help.

• Step 1: Install Conda
24 https://pip.pypa.io/en/stable/
25 https://www.python.org
26 https://git-annex.branchable.com/install/
27 https://ubuntu.com/wsl
28 https://github.com/datalad-handbook/book/issues/new
29 https://github.com/datalad-handbook/book/issues/new

3.1. Install DataLad 12

https://pip.pypa.io/en/stable/
https://www.python.org
https://git-annex.branchable.com/install/
https://ubuntu.com/wsl
https://github.com/datalad-handbook/book/issues/new
https://github.com/datalad-handbook/book/issues/new
https://github.com/datalad-handbook/book/issues/new

The DataLad Handbook, Release 0.12.0+519.g04985082

– Go to https://docs.conda.io/en/latest/miniconda.html and pick the latest Python 3
installer. Miniconda is a free, minimal installer for conda and will install conda30,
Python, depending packages, and a number of useful packages such as pip31.

– During installation, keep everything on default. In particular, do not add anything to
PATH.

– From now on, any further action must take place in the Anaconda prompt, a precon-
figured terminal shell. Find it by searching for “Anaconda prompt” in your search
bar.

• Step 2: Install Git

– In the Anaconda prompt, run:

conda install -c conda-forge git

Note: Is has to be from conda-forge, the anaconda version does not provide the cp
command.

• Step 3: Install git-annex

– Obtain the current git-annex versions installer from here32. Save the file, and double
click the downloaded git-annex-installer.exe in your Downloads.

– During installation, you will be prompted to “Choose Install Location”. Install it into
the miniconda Library directory, e.g. C:\Users\me\Miniconda3\Library.

• Step 4: Install DataLad via pip

– pip was installed by miniconda. In the Anaconda prompt, run:

pip install datalad~=0.12

• Step 5: Install 7zip

– 7zip33 is a dependency of DataLad and not installed by default on Windows 10.
Please make sure to download and install it.

3.2 Initial configuration

Initial configurations only concern the setup of a Git identity. If you are a Git-user, you should
hence be good to go.

30 https://docs.conda.io/en/latest/
31 https://pip.pypa.io/en/stable/
32 https://downloads.kitenet.net/git-annex/windows/current/
33 https://7-zip.de/download.html

3.2. Initial configuration 13

https://docs.conda.io/en/latest/miniconda.html
https://docs.conda.io/en/latest/
https://pip.pypa.io/en/stable/
https://downloads.kitenet.net/git-annex/windows/current/
https://7-zip.de/download.html

The DataLad Handbook, Release 0.12.0+519.g04985082

Don't forget to configure
 your Git identity!

If you have not used the version control system Git before, you will need to tell Git some
information about you. This needs to be done only once. In the following example, exchange
Bob McBobFace with your own name, and bob@example.com with your own email address.

enter your home directory using the ~ shortcut
% cd ~
% git config --global --add user.name "Bob McBobFace"
% git config --global --add user.email bob@example.com

This information is used to track changes in the DataLad projects you will be working on. Based
on this information, changes you make are associated with your name and email address, and
you should use a real email address and name – it does not establish a lot of trust nor is it
helpful after a few years if your history, especially in a collaborative project, shows that changes
were made by Anonymous with the email youdontgetmy@email.fu. And do not worry, you won’t
get any emails from Git or DataLad.

3.2. Initial configuration 14

CHAPTER

FOUR

GENERAL PREREQUISITES

DataLad uses command-line arguments in a terminal. This means that there is no graphical user
interface with buttons to click on, but a set of commands and options users type into their shell.
If you are not used to working with command-line arguments, DataLad can appear intimidating.
Luckily, the set of possible commands is limited, and even without prior experience with a shell,
one can get used to it fairly quickly.

This chapter aims at providing novices with general basics about the shell, common Unix com-
mands, and some general file system facts. This chapter is also a place to return to and (re-)read
if you come across a non-DataLad command or principle you want to remind yourself of. If you
are already familiar with the shell and know the difference between an absolute and a relative
path, you can safely skip this chapter and continue to the DataLad Basics.

Almost all of this chapter is based on parts of a wonderful lab documentation Alex Waite wrote.

4.1 The Command Line

The shell (sometimes also called a terminal, console, or CLI) is an interactive, text based in-
terface. If you have used Matlab or IPython, then you are already familiar with the basics of a
command line interface.

Fig. 1: A terminal window in a standard desktop environment.

15

The DataLad Handbook, Release 0.12.0+519.g04985082

4.2 Command Syntax

Commands are case sensitive and follow the syntax of: command [options...] <arguments...>.
Whenever you see some example code in the code snippets of this book, make sure that you
capitalize exactly as shown if you try it out yourself. The options modify the behavior of the
program, and are usually preceded by - or --. In this example

$ ls -l output.txt
-rw-r--r-- 1 adina adina 25165824 Feb 17 08:54 output.txt

ls is the command. The option -l tells ls to use a long listing format and thus display more
information. output.txt is the argument — the file that ls is listing. The difference between
options preceded by - and -- is their length: Usually, all options starting with a single dash are
single letters. Often, a long, double-dashed option exists for these short options as well. For
example, to list the size of a file in a human-readable format, supply the short option -h, or,
alternatively, its longer form, --human-readable.

$ ls -lh output.txt # note that short options can be combined!
or alternatively
$ ls -l --human-readable output.txt
-rw-r--r-- 1 adina adina 24M Feb 17 08:54 output.txt

Every command has many of those options (often called “flags”) that modify their behavior.
There are too many to even consider memorizing. Remember the ones you use often, and
the rest you will lookup in their documentation or via your favorite search engine. DataLad
commands naturally also come with many options, and in the next chapters and later examples
you will get to see many of them.

4.3 Basic Commands

The following commands can appear in our examples or are generally useful to know: They can
help you to explore and navigate in your file system (cd, ls), copy, move, or remove files (cp,
mv, rm), or create new directories (mkdir).

ls -lah <folder> list the contents of a folder, including hidden files (-a), and all their infor-
mation (-l); print file sizes in human readable units (-h)

cd <folder> change to another folder

cp <from> <to> copy a file

cp -R <from> <to> copy a folder and its contents (-R)

mv <from> <to> move/rename a file or folder

rm <file> delete a file

rm -Rv <folder> delete a folder and its contents (-R) and list each file as it’s being deleted (-v)

mkdir <folder> create a folder

rmdir <folder> delete an empty folder

4.2. Command Syntax 16

The DataLad Handbook, Release 0.12.0+519.g04985082

4.4 The Prompt

When you first login on the command line, you are greeted with “the prompt”, and it will likely
look similar to this:

adina@muninn: ~$

This says I am the user adina on the machine muninn and I am in the folder ~, which is short-
hand for the current user’s home folder (in this case /home/adina).

The $ sign indicates that the prompt is interactive and awaiting user input. In this handbook,
we will use $ as a shorthand for the prompt, to allow the reader to quickly differentiate between
lines containing commands vs the output of those commands.

4.5 Paths

Let’s say I want to create a new folder in my home folder, I can run the following command:

$ mkdir /home/adina/awesome_datalad_project

And that works. /home/adina/awesome_datalad_project is what is called an absolute path.
Absolute paths always start with a /, and define the folder’s location with no ambiguity.

However, much like in spoken language, using someone’s full proper name every time would be
exhausting, and thus pronouns are used.

This shorthand is called relative paths, because they are defined (wait for it. . .) relative to your
current location on the file system. Relative paths never start with a /.

Unix knows a few shortcuts to refer to file system related directories, and you will come across
them often. Whenever you see a ., .., or ~ in a DataLad command, here is the translation to
this cryptic punctuation:

. the current directory

.. the parent directory

~ the current user’s home directory

So, taking the above example again: given that I am in my home (~) folder, the following
commands all would create the new folder in the exact same place.

mkdir /home/adina/awesome_datalad_project
mkdir ~/awesome_datalad_project
mkdir awesome_datalad_project
mkdir ./awesome_datalad_project

To demonstrate this further, consider the following: In my home directory /home/adina I have
added a folder for my current project, awesome_datalad_project/. Let’s take a look at how this
folder is organized:

$ tree

home
adina

awesome_datalad_project
(continues on next page)

4.4. The Prompt 17

The DataLad Handbook, Release 0.12.0+519.g04985082

(continued from previous page)

aligned
code

sub-01
bold3T

sub-02
bold3T

...
sub-xx

bold3T
structural

sub-01
anat

sub-02
anat

...
sub-xx

anat

Now let’s say I want to change from my home directory /home/adina into the code/ folder of
the project. I could use absolute paths:

cd /home/adina/awesome_datalad_project/aligned/code

But that is a bit wordy. It is much easier with a relative path:

$ cd awesome_datalad_project/aligned/code

Relative to my starting location (/home/adina), I navigated into the subfolders.

I can change back to my home directory also with a relative path:

$ cd ../../../

The first ../ takes me from code/ to its parent aligned/, the second ../ to
awesome_datalad_project/, and the last ../ back to my home directory adina/.

However, since I want to go back to my home folder, it’s much faster to run:

$ cd ~

4.6 Text Editors

Text editors are a crucial tool for any Linux user, but regardless of your operating system, if you
use DataLad, you will occasionally find yourself in your default text editor to write a commit
message to describe a change you performed in your DataLad dataset.

Religious wars have been fought over which is “the best” editor. From the smoldering ashes,
this is the breakdown:

nano Easy to use; medium features. If you do not know which to use, start with this.

vim Powerful and light; lots of features and many plugins; steep learning curve. Two resources
to help get the most out of vim are the vimtutor program and vimcasts.org. If you acci-
dentally enter vim unprepared, typing :q will get you out of there.

4.6. Text Editors 18

The DataLad Handbook, Release 0.12.0+519.g04985082

emacs Powerful; tons of features; written in Lisp; huge ecosystem; advanced learning curve.

4.7 Shells

Whenever you use the command line on a Unix-based system, you do that in a command-line
interpreter that is referred to as a shell.

The shell is used to start commands and display the output of those commands. It also comes
with its own primitive (yet surprisingly powerful) scripting language.

Many shells exist, though most belong to a family of shells called “Bourne Shells” that descend
from the original sh. This is relevant, because they share (mostly) a common syntax.

Two common shells are:

Bash The bourne-again shell (bash) is the default shell on many *nix systems (most Linux
distros, MacOS).

zsh The Z shell (zsh) comes with many additional features, the highlights being: shared history
across running shells, smarter tab-completion, spelling correction, and better theming.

To determine what shell you’re in, run the following:

$ echo $SHELL
usr/bin/bash

4.8 Tab Completion

One of the best features ever invented is tab completion. Imagine your favorite animal sitting
on your shoulder. Now imagine that animal shouting “TAB!” every time you’ve typed the first 3
letters of a word. Listen to that animal.

Tab completion autocompletes commands and paths when you press the Tab key. If there are
multiple matching options, pressing Tab twice will list them.

The greatest advantage of tab completion is not increased speed (though that is a nice benefit)
but rather the near elimination of typos — and the resulting reduction of cognitive load. You
can actually focus on the task you’re working on, rather than your typing. Tab-completion will
autocomplete a DataLad command, options you give to it, or paths.

For an example of tab-completion with paths, consider the following directory structure:

Desktop
Documents

my_awesome_project
my_comics

xkcd
is_it_worth_the_time.png

Downloads

You’re in your home directory, and you want to navigate to your xkcd34 comic selection in
Documents/my_comics/xkcd. Instead of typing the full path error-free, you can press Tab after
the first few letters. If it is unambiguous, such as cd Doc <Tab>, it will expand to cd Documents.

34 https://xkcd.com/1205/

4.7. Shells 19

https://xkcd.com/1205/

The DataLad Handbook, Release 0.12.0+519.g04985082

If there are multiple matching options, such as cd Do, you will be prompted for more letters.
Pressing Tab again will list the matching options (Documents and Downloads in this case).

That’s it – equipped with the basics of Unix, you are good to go on your DataLad advan-
ture!

4.8. Tab Completion 20

CHAPTER

FIVE

WHAT YOU REALLY NEED TO KNOW

DataLad is a data management multitool that can assist you in handling the entire life cycle
of digital objects. It is a command-line tool, free and open source, and available for all major
operating systems.

This document is the 10.000 feet overview of important concepts, commands, and capacities of
DataLad. Each section briefly highlights one type of functionality or concept and the associated
commands, and the upcoming Basics chapters will demonstrate in detail how to use them.

5.1 DataLad datasets

Every command affects or uses DataLad datasets, the core data structure of DataLad. A dataset
is a directory on a computer that DataLad manages.

.... or transform existing directories into datasets

create new, empty datasets to populate...

% datalad create

% datalad create -f

You can create new, empty datasets from scratch and populate them, or transform existing
directories into datasets.

21

../basics/101-101-create.html

The DataLad Handbook, Release 0.12.0+519.g04985082

5.2 Simplified local version control workflows

Building on top of Git and git-annex, DataLad allows you to version control arbitrarily large files
in datasets.

save
changes

modify the
dataset

version 1

version 2

version 3

% datalad save

Thus, you can keep track of revisions of data of any size, and view, interact with or restore any
version of your dataset’s history.

5.3 Consumption and collaboration

DataLad lets you consume datasets provided by others, and collaborate with them. You can
install existing datasets and update them from their sources, or create sibling datasets that you
can publish updates to and pull updates from for collaboration and data sharing.

Consume existing datasets and stay up-to-date

Create sibling datasets to publish to or update from

1 1

% datalad create-sibling

% datalad publish

% datalad update

% datalad clone

your workstation a different place

Cloud

Additionally, you can get access to publicly available open data collections with the DataLad
superdataset ///.

5.2. Simplified local version control workflows 22

../basics/101-107-summary.html
../basics/101-120-summary.html

The DataLad Handbook, Release 0.12.0+519.g04985082

5.4 Dataset linkage

Datasets can contain other datasets (subdatasets), nested arbitrarily deep. Each dataset has an
independent revision history, but can be registered at a precise version in higher-level datasets.
This allows to combine datasets and to perform commands recursively across a hierarchy of
datasets, and it is the basis for advanced provenance capture abilities.

Paper
B

Raw
data

Analysis
A

Paper
A

Analysis
B

Preprocessed

Nest modular datasets to create a linked hierarchy of datasets,
and enable recursive operations throughout the hierarchy

5.5 Full provenance capture and reproducibility

DataLad allows to capture full provenance: The origin of datasets, the origin of files obtained
from web sources, complete machine-readable and automatically reproducible records of how
files were created (including software environments).

1
2

2
1

link input, code, containerized
 software environments, and output,

or re-run previous executions

% datalad run

% datalad rerun

capture the origin
of files obtained
from web sources

% datalad download-url

% datalad run-procedure

You or your collaborators can thus re-obtain or reproducibly recompute content with a single
command, and make use of extensive provenance of dataset content (who created it, when, and
how?).

5.4. Dataset linkage 23

../basics/101-106-nesting.html
../basics/101-113-summary.html

The DataLad Handbook, Release 0.12.0+519.g04985082

5.6 Third party service integration

Export datasets to third party services such as GitHub35, GitLab36, or Figshare37 with built-in
commands.

% datalad create-sibling-gitlab

% datalad create-sibling-github

% datalad export-to-figshare

Alternatively, you can use a multitude of other available third party services such as Dropbox38,
Google Drive39, Amazon S340, owncloud41, or many more that DataLad datasets are compatible
with.

5.7 Metadata handling

Extract, aggregate, and query dataset metadata. This allows to automatically obtain metadata
according to different metadata standards (EXIF, XMP, ID3, BIDS, DICOM, NIfTI1, . . .), store
this metadata in a portable format, share it, and search dataset contents.

NIDM

DICOM
BIDS

00ce
405e

-658
9-11

e8↩

-b74
9-a0

369f
b55d

b0

RAW

"dicom":{ },"xmp":{ }, }

{

...

...

...

{ }

"bids":{ }}

{

...

"ni
dm"

:{
}}

{

...STan ardizedD raw

std

ana

ANAlysis

raw

XMP
. . .

metadata format homogenization to JSON-LD
juxtapose representation of metadata plurality

 Automated metadata

 extraction from any

 number and selection

of formats

Subda
taset

 metad
ata a

ggre
gatio

n

into
supe

rdata
sets

full metadata export and query
in superdatasets

independent of data and subdataset availablity

 3rd-party metadata

 extractor support,

 extract once, use

everywhere

b910
1f1e

-ebc
9-4b

d5↩

-a46
9-50

5baa
a573

87
fc501

7a1-
bea6

-4ea
c↩

-9bd
3-26

640f
9d95

0f

T1
d41d

8cd9
8f00

b204
↩

 e98
0099

8ecf8
427e

 identifiers for datasets,
 file content and location
FAIR

 "path": "inputs/openneuro_ds008/sub-15/anat/sub-15_t1w.nii.gz",
 "metadata: {
 "datalad":{"dataset":"b9101f1e-ebc9-4bd5-a469-505baaa57387", },
 "annex":{"key":"d41d8cd98f00b204e9800998ecf8427e", ,
 "url":["http://openneuro.s3.amazonaws.com/ _R1.1.0/ Z9",]}},

{

...

...

}... ...

% datalad --output-format json search \
 bids.subject.sex:female bids.subject.age:24 bids.type:t1

35 https://github.com/
36 https://about.gitlab.com/
37 https://figshare.com/
38 https://dropbox.com
39 https://drive.google.com/drive/my-drive
40 https://aws.amazon.com/de/s3/
41 https://owncloud.org/

5.6. Third party service integration 24

https://github.com/
https://about.gitlab.com/
https://figshare.com/
https://dropbox.com
https://drive.google.com/drive/my-drive
https://aws.amazon.com/de/s3/
https://owncloud.org/

The DataLad Handbook, Release 0.12.0+519.g04985082

5.8 All in all. . .

You can use DataLad for a variety of use cases. At its core, it is a domain-agnostic and self-
effacing tool: DataLad allows to improve your data management without custom data structures
or the need for central infrastructure or third party services. If you are interested in more
high-level information on DataLad, you can find answers to common questions in the section
Frequently Asked Questions (page 371), and a concise command cheat-sheet in section DataLad
cheat sheet (page 381).

But enough of the introduction now – let’s dive into the Basics (page 27)

5.8. All in all. . . 25

Part II

Basics

26

The DataLad Handbook, Release 0.12.0+519.g04985082

The Basics will show you the building blocks of DataLad in a continuous narrative. Start up a
terminal, and code along! For the best experience, try reading the Basics chapter sequentially.

27

CHAPTER

SIX

DATALAD DATASETS

1

6.1 Create a dataset

We are about to start the educational course DataLad-101. In order to follow along and organize
course content, let us create a directory on our computer to collate the materials, assignments,
and notes in.

Since this is DataLad-101, let’s do it as a DataLad dataset. You might associate the term “dataset”
with a large spreadsheet containing variables and data. But for DataLad, a dataset is the core
data type: As noted in A brief overview of DataLad (page 2), a dataset is a collection of files in
folders, and a file is the smallest unit any dataset can contain. Although this is a very simple

28

The DataLad Handbook, Release 0.12.0+519.g04985082

concept, datasets come with many useful features. Because experiencing is more insightful than
just reading, we will explore the concepts of DataLad datasets together by creating one.

Find a nice place on your computer’s file system to put a dataset for DataLad-101, and create a
fresh, empty dataset with the datalad create command (datalad-create manual).

Note the command structure of datalad create (optional bits are enclosed in []):

datalad create [--description "..."] [-c <config options>] PATH

Find out more

What is the description option?
The optional --description flag allows you to provide a short description of the location
of your dataset, for example with

datalad create --description "course on DataLad-101 on my private Laptop" -c␣
→˓text2git DataLad-101

If you want, use the above command instead of the create command below to provide
a description. Its use will not be immediately clear, the chapter Collaboration (page 83))
will show you where this description ends up and how it may be useful.

Let’s start:

$ datalad create -c text2git DataLad-101
[INFO] Creating a new annex repo at /home/me/dl-101/DataLad-101
[INFO] Running procedure cfg_text2git
[INFO] == Command start (output follows) =====
[INFO] == Command exit (modification check follows) =====
create(ok): /home/me/dl-101/DataLad-101 (dataset)

This will create a dataset called DataLad-101 in the directory you are currently in. For now,
disregard -c text2git. It applies a configuration template, but there will be other parts of this
book to explain this in detail.

Once created, a DataLad dataset looks like any other directory on your file system. Currently, it
seems empty.

$ cd DataLad-101
$ ls # ls does not show any output, because the dataset is empty.

However, all files and directories you store within the DataLad dataset can be tracked (should
you want them to be tracked). Tracking in this context means that edits done to a file are
automatically associated with information about the change, the author of the edit, and the
time of this change. This is already informative important on its own – the provenance captured
with this can for example be used to learn about a file’s lineage, and can establish trust in
it. But what is especially helpful is that previous states of files or directories can be restored.
Remember the last time you accidentally deleted content in a file, but only realized after you
saved it? With DataLad, no mistakes are forever. We will see many examples of this later in the
book, and such information is stored in what we will refer to as the history of a dataset.

This history is almost as small as it can be at the current state, but let’s take a look at it. For
looking at the history, the code examples will use git log, a built-in Git command43 that works

43 A tool we can recommend as an alternative to git log is tig. Once installed, exchange any git log command
you see here with the single word tig.

6.1. Create a dataset 29

The DataLad Handbook, Release 0.12.0+519.g04985082

right in your terminal. Your log might be opened in a terminal pager42 that lets you scroll up
and down with your arrow keys, but not enter any more commands. If this happens, you can
get out of git log by pressing q.

$ git log
commit c74e2b7951db566d5ccce7faeb2f86584d4d6321
Author: Elena Piscopia <elena@example.net>
Date: Mon Feb 17 08:48:47 2020 +0100

Instruct annex to add text files to Git

commit dbaf9fae9f69b9bfea1a6b7e2f374335f41702c1
Author: Elena Piscopia <elena@example.net>
Date: Mon Feb 17 08:48:46 2020 +0100

[DATALAD] new dataset

We can see two commits in the history of the repository. Each of them is identified by a unique 40
character sequence, called a shasum. Highlighted in this output is information about the author
and about the time, as well as a commit message that summarizes the performed action concisely.
In this case, both commit messages were written by DataLad itself. The most recent change
is on the top. The first commit written to the history therefore states that a new dataset was
created, and the second commit is related to the -c text2git option (which uses a configuration
template to instruct DataLad to store text files in Git, but more on this later). Even though these
commits were produced by DataLad, in most other cases, you will have to create the commit
and an informative commit message yourself.

Note for Git users

datalad create uses git init and git-annex init. Therefore, the DataLad dataset is
a Git repository. Large file content in the dataset is tracked with git-annex. An ls -a
reveals that Git has secretly done its work:

$ ls -a # show also hidden files
.
..
.datalad
.git
.gitattributes

For non-Git-Users: these hidden dot-directories are necessary for all git magic to
work. Please do not tamper with them, and, importantly, do not delete them.

Congratulations, you just created your first DataLad dataset! Let us now put some content
inside.

6.2 Populate a dataset

The first lecture in DataLad-101 referenced some useful literature. Even if we end up not
reading those books at all, let’s download them nevertheless and put them into our dataset. You
never know, right? Let’s first create a directory to save books for additional reading in.

42 https://en.wikipedia.org/wiki/Terminal_pager

6.2. Populate a dataset 30

https://en.wikipedia.org/wiki/Terminal_pager

The DataLad Handbook, Release 0.12.0+519.g04985082

$ mkdir books

Let’s take a look at the current directory structure with the tree command49:

$ tree
.

books

1 directory, 0 files

Arguably, not the most exciting thing to see. So let’s put some PDFs inside. Below is a short list
of optional readings. We decide to download them (they are all free, in total about 15 MB), and
save them in DataLad-101/books.

• Additional reading about the command line: The Linux Command Line44

• An intro to Python: A byte of Python45

You can either visit the links and save them in books/, or run the following commands50 to
download the books right from the terminal:

$ cd books
$ wget https://sourceforge.net/projects/linuxcommand/files/TLCL/19.01/TLCL-19.01.pdf/
→˓download -O TLCL.pdf
$ wget https://edisciplinas.usp.br/pluginfile.php/3252353/mod_resource/content/1/b_
→˓Swaroop_Byte_of_python.pdf -O byte-of-python.pdf
get back into the root of the dataset
$ cd ../
2020-02-17 08:48:50 URL:https://netix.dl.sourceforge.net/project/linuxcommand/TLCL/19.01/
→˓TLCL-19.01.pdf [2120211/2120211] -> "TLCL.pdf" [1]
2020-02-17 08:49:11 URL:https://edisciplinas.usp.br/pluginfile.php/3252353/mod_resource/
→˓content/1/b_Swaroop_Byte_of_python.pdf [4242644/4242644] -> "byte-of-python.pdf" [1]

Let’s see what happened. First of all, in the root of DataLad-101, show the directory structure
with tree:

$ tree
.

books
byte-of-python.pdf
TLCL.pdf

1 directory, 2 files

Now what does DataLad do with this new content? One command you will use very often
is datalad status (datalad-status manual). It reports on the state of dataset content, and
regular status reports should become a habit in the wake of DataLad-101.

49 tree is a Unix command to list file system content. If it is not yet installed, you can get it with your native
package manager (e.g., apt or brew). For example, if you use OSX, brew install tree will get you this tool.

44 https://sourceforge.net/projects/linuxcommand/files/TLCL/19.01/TLCL-19.01.pdf/download
45 https://edisciplinas.usp.br/pluginfile.php/3252353/mod_resource/content/1/b_Swaroop_Byte_of_python.

pdf
50 wget is a Unix command for non-interactively downloading files from the web. If it is not yet installed, you can

get it with your native package manager (e.g., apt or brew). For example, if you use OSX, brew install wget will
get you this tool.

6.2. Populate a dataset 31

https://sourceforge.net/projects/linuxcommand/files/TLCL/19.01/TLCL-19.01.pdf/download
https://edisciplinas.usp.br/pluginfile.php/3252353/mod_resource/content/1/b_Swaroop_Byte_of_python.pdf

The DataLad Handbook, Release 0.12.0+519.g04985082

$ datalad status
untracked: books (directory)

Interesting; the books/ directory is “untracked”. Remember how content can be tracked if a
user wants to? Untracked means that DataLad does not know about this directory or its content,
because we have not instructed DataLad to actually track it. This means that DataLad does
not store the downloaded books in its history yet. Let’s change this by saving the files to the
dataset’s history with the datalad save command (datalad-save manual).

This time, it is your turn to specify a helpful commit message with the -m option (although the
DataLad command is datalad save, we talk about commit messages because datalad save
ultimatively uses the command git commit to do its work):

$ datalad save -m "add books on Python and Unix to read later"
add(ok): books/TLCL.pdf (file)
add(ok): books/byte-of-python.pdf (file)
save(ok): . (dataset)
action summary:
add (ok: 2)
save (ok: 1)

Find out more

“Oh no! I forgot the -m option!”
If you forget to specify a commit message with the -m option, DataLad will write
[DATALAD] Recorded changes as a commit message into your history. This is not par-
ticularly informative. You can change the last commit message with the Git command
git commit --amend. This will open up your default editor and you can edit the commit
message. Careful – the default editor might be vim! The section Back and forth in time
(page 213) will show you many more ways in which you can interact with a dataset’s
history.

As already noted, any files you save in this dataset, and all modifications to these files that you
save, are tracked in this history. Importantly, this file tracking works regardless of the size of the
files – a DataLad dataset could be your private music or movie collection with single files being
many GB in size. This is one aspect that distinguishes DataLad from many other version control
tools, among them Git. Large content is tracked in an annex that is automatically created and
handled by DataLad. Whether text files or larger files change, all of these changes can be written
to your DataLad dataset’s history.

Let’s see how the saved content shows up in the history of the dataset with git log. The option
-n 1 specifies that we want to take a look at the most recent commit. In order to get a bit more
details, we add the -p flag. If you end up in a pager, navigate with up and down arrow keys
and leave the log by typing q:

$ git log -p -n 1
commit 44aa3e27dfd88183567f22a6a835e042171391f0
Author: Elena Piscopia <elena@example.net>
Date: Mon Feb 17 08:49:12 2020 +0100

add books on Python and Unix to read later

diff --git a/books/TLCL.pdf b/books/TLCL.pdf
new file mode 120000

(continues on next page)

6.2. Populate a dataset 32

The DataLad Handbook, Release 0.12.0+519.g04985082

(continued from previous page)

index 0000000..4c84b61
--- /dev/null
+++ b/books/TLCL.pdf
@@ -0,0 +1 @@
+../.git/annex/objects/jf/3M/MD5E-s2120211--06d1efcb05bb2c55cd039dab3fb28455.pdf/MD5E-
→˓s2120211--06d1efcb05bb2c55cd039dab3fb28455.pdf
\ No newline at end of file
diff --git a/books/byte-of-python.pdf b/books/byte-of-python.pdf
new file mode 120000
index 0000000..58c0629
--- /dev/null
+++ b/books/byte-of-python.pdf

Now this might look a bit cryptic (and honestly, tig51 makes it look prettier). But this tells us
the date and time in which a particular author added two PDFs to the directory books/, and
thanks to that commit message we have a nice human-readable summary of that action.

Find out more

DOs and DON’Ts for commit messages
DOs

• Write a title line with 72 characters or less (as we did so far)
• it should be in imperative voice, e.g., “Add notes from lecture 2”
• Often, a title line is not enough to express your changes and reasoning behind it. In

this case, add a body to your commit message by hitting enter twice (before closing
the quotation marks), and continue writing a brief summary of the changes after
a blank line. This summary should explain “what” has been done and “why”, but
not “how”. Close the quotation marks, and hit enter to save the change with your
message.

• here you can find more guidelines: https://gist.github.com/robertpainsi/
b632364184e70900af4ab688decf6f53

DON’Ts
• passive voice is hard to read afterwards
• extensive formatting (hashes, asterisks, quotes, . . .) will most likely make your

shell complain
• it should be obvious: do not say nasty things about other people

Note for Git users

Just as in Git, new files are not tracked from their creation on, but only when explicitly
added to Git (in Git terms with an initial git add). But different from the common Git
workflow, DataLad skips the staging area. A datalad save combines a git add and a git
commit, and therefore, the commit message is specified with datalad save.

Cool, so now you have added some files to your dataset history. But what is a bit inconvenient is
that both books were saved together. You begin to wonder: “A Python book and a Unix book do
not have that much in common. I probably should not save them in the same commit. And . . .
what happens if I have files I do not want to track? datalad save -m "some commit message"
would save all of what is currently untracked or modified in the dataset into the history!”

Regarding your first remark, you’re absolutely right! It is good practice to save only those
51 See tig. Once installed, exchange any git log command you see here with the single word tig.

6.2. Populate a dataset 33

https://gist.github.com/robertpainsi/b632364184e70900af4ab688decf6f53
https://gist.github.com/robertpainsi/b632364184e70900af4ab688decf6f53

The DataLad Handbook, Release 0.12.0+519.g04985082

changes together that belong together. We do not want to squish completely unrelated changes
into the same spot of our history, because it would get very nasty should we want to revert some
of the changes without affecting others in this commit.

Luckily, we can point datalad save to exactly the changes we want it to record. Let’s try this by
adding yet another book, a good reference work about git, Pro Git46:

$ cd books
$ wget https://github.com/progit/progit2/releases/download/2.1.154/progit.pdf
$ cd ../
2020-02-17 08:49:16 URL:https://github-production-release-asset-2e65be.s3.amazonaws.com/
→˓15400220/57552a00-9a49-11e9-9144-d9607ed4c2db?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-
→˓Credential=AKIAIWNJYAX4CSVEH53A%2F20200217%2Fus-east-1%2Fs3%2Faws4_request&X-Amz-
→˓Date=20200217T074913Z&X-Amz-Expires=300&X-Amz-
→˓Signature=d570838402c46cfaec8c625167c0df0a6f8aae6eaa1fef4b1791da7325e5d8a8&X-Amz-
→˓SignedHeaders=host&actor_id=0&response-content-disposition=attachment%3B%20filename
→˓%3Dprogit.pdf&response-content-type=application%2Foctet-stream [12465653/12465653] ->
→˓"progit.pdf" [1]

datalad status shows that there is a new untracked file:

$ datalad status
untracked: books/progit.pdf (file)

Let’s datalad save precisely this file by specifying its path after the commit message:

$ datalad save -m "add reference book about git" books/progit.pdf
add(ok): books/progit.pdf (file)
save(ok): . (dataset)
action summary:
add (ok: 1)
save (ok: 1)

Find out more

Some more on save
Regarding your second remark, you’re right that a datalad save without a path speci-
fication would write all of the currently untracked files or modifications to the history.
There are some ways to mitigate this: A datalad save -m "concise message" --updated
(or the shorter form of --updated, -u) will only write modifications to the history, not
untracked files. Later, we will also see .gitignore files that let you hide content from
version control. However, it is good practice to safely store away modifications or new
content. This improves your dataset and workflow, and will be a requirement for execut-
ing certain commands.

A datalad status should now be empty, and our dataset’s history should look like this:

lets make the output a bit more concise with the --oneline option
$ git log --oneline
393f24f add reference book about git
44aa3e2 add books on Python and Unix to read later
c74e2b7 Instruct annex to add text files to Git
dbaf9fa [DATALAD] new dataset

46 https://git-scm.com/book/en/v2

6.2. Populate a dataset 34

https://git-scm.com/book/en/v2

The DataLad Handbook, Release 0.12.0+519.g04985082

“Wonderful! I’m getting a hang on this quickly”, you think. “Version controlling files is not as
hard as I thought!”

But downloading and adding content to your dataset “manually” has two disadvantages: For
one, it requires you to download the content and save it. Compared to a workflow with no
DataLad dataset, this is one additional command you have to perform (and that additional time
adds up, after a while47). But a more serious disadvantage is that you have no electronic record
of the source of the contents you added. The amount of provenance, the time, date, and author
of file, is already quite nice, but we don’t know anything about where you downloaded these
files from. If you would want to find out, you would have to remember where you got the
content from – and brains are not made for such tasks.

Luckily, DataLad has a command that will solve both of these problems: The datalad
download-url command (datalad-download-url manual). We will dive deeper into the
provenance-related benefits of using it in later chapters, but for now, we’ll start with best-
practice-building. datalad download-url can retrieve content from a URL (following any URL-
scheme from https, http, or ftp or s3) and save it into the dataset together with a human-
readable commit message and a hidden, machine-readable record of the origin of the con-
tent. This saves you time, and captures provenance information about the data you add to your
dataset. To experience this, let’s add a final book, a beginner’s guide to bash48, to the dataset.
We provide the command with a URL, a pointer to the dataset the file should be saved in (.
denotes “current directory”), and a commit message. Note that we line break the command
with \ signs. You can copy them as they are presented here into your terminal, but in your own
work you can write commands like this into a single line.

$ datalad download-url http://www.tldp.org/LDP/Bash-Beginners-Guide/Bash-Beginners-Guide.
→˓pdf \
--dataset . \
-m "add beginners guide on bash" \
-O books/bash_guide.pdf

[INFO] Downloading 'http://www.tldp.org/LDP/Bash-Beginners-Guide/Bash-Beginners-Guide.pdf
→˓' into '/home/me/dl-101/DataLad-101/books/bash_guide.pdf'
download_url(ok): /home/me/dl-101/DataLad-101/books/bash_guide.pdf (file)
add(ok): books/bash_guide.pdf (file)
save(ok): . (dataset)
action summary:
add (ok: 1)
download_url (ok: 1)
save (ok: 1)

Afterwards, a fourth book is inside your books/ directory:

$ ls books
bash_guide.pdf
byte-of-python.pdf
progit.pdf
TLCL.pdf

However, the datalad status command does not return any output – the dataset state is
“clean”:

$ datalad status
nothing to save, working tree clean

47 https://xkcd.com/1205/
48 http://www.tldp.org/LDP/Bash-Beginners-Guide/Bash-Beginners-Guide.pdf

6.2. Populate a dataset 35

https://xkcd.com/1205/
https://xkcd.com/1205/
http://www.tldp.org/LDP/Bash-Beginners-Guide/Bash-Beginners-Guide.pdf

The DataLad Handbook, Release 0.12.0+519.g04985082

This is because datalad download-url took care of saving for you:

$ git log -p -n 1
commit 8d3b831c9850ec783870c26d516db78ac4a5d1d1
Author: Elena Piscopia <elena@example.net>
Date: Mon Feb 17 08:49:26 2020 +0100

add beginners guide on bash

diff --git a/books/bash_guide.pdf b/books/bash_guide.pdf
new file mode 120000
index 0000000..00ca6bd
--- /dev/null
+++ b/books/bash_guide.pdf
@@ -0,0 +1 @@
+../.git/annex/objects/WF/Gq/MD5E-s1198170--0ab2c121bcf68d7278af266f6a399c5f.pdf/MD5E-
→˓s1198170--0ab2c121bcf68d7278af266f6a399c5f.pdf
\ No newline at end of file

At this point in time, the biggest advantage may seem to be the time save. However, soon you
will experience how useful it is to have DataLad keep track for you where file content came
from.

To conclude this section, let’s take a final look at the history of your dataset at this point:

$ git log --oneline
8d3b831 add beginners guide on bash
393f24f add reference book about git
44aa3e2 add books on Python and Unix to read later
c74e2b7 Instruct annex to add text files to Git
dbaf9fa [DATALAD] new dataset

Well done! Your DataLad-101 dataset and its history are slowly growing.

6.3 Modify content

So far, we’ve only added new content to the dataset. And we have not done much to that
content up to this point, to be honest. Let’s see what happens if we add content, and then
modify it.

For this, in the root of DataLad-101, create a plain text file called notes.txt. It will contain all
of the notes that you take throughout the course.

Let’s write a short summary of how to create a DataLad dataset from scratch:

“One can create a new dataset with ‘datalad create [–description] PATH’. The dataset
is created empty”.

This is meant to be a note you would take in an educational course. You can take this note
and write it to a file with an editor of your choice. The code below, however, contains this note
within the start and end part of a here document52. You can also copy the full code snippet,
starting from cat << EOT > notes.txt, including the EOT in the last line, in your terminal to
write this note from the terminal (without any editor) into notes.txt.

52 https://en.wikipedia.org/wiki/Here_document

6.3. Modify content 36

https://en.wikipedia.org/wiki/Here_document

The DataLad Handbook, Release 0.12.0+519.g04985082

Find out more

How does a here-document work?
The code snippet below makes sure to write lines of text into a file (that so far does not
exist) called notes.txt.
To do this, the content of the “document” is wrapped in between delimiting identifiers.
Here, these identifiers are EOT (short for “end of text”), but naming is arbitrary as long
as the two identifiers are identical. The first “EOT” identifies the start of the text stream,
and the second “EOT” terminates the text stream.
The characters << redirect the text stream into “standard input” (stdin)53, the standard
location that provides the input for a command. Thus, the text stream becomes the
input for the cat command54, which takes the input and writes it to “standard output”
(stdout)55.
Lastly, the > character takes stdout can creates a new file notes.txt with stdout as its
contents.
It might seem like a slightly convoluted way to create a text file with a note in it. But it
allows to write notes from the terminal, enabling this book to create commands you can
execute with nothing other than your terminal. You are free to copy-paste the snippets
with the here-documents, or find a workflow that suites you better. The only thing im-
portant is that you create and modify a .txt file over the course of the Basics part of this
handbook.

53 https://en.wikipedia.org/wiki/Standard_streams#Standard_input_(stdin)
54 https://en.wikipedia.org/wiki/Cat_(Unix)
55 https://en.wikipedia.org/wiki/Standard_streams#Standard_output_(stdout)

Running the command below will create notes.txt in the root of your DataLad-101 dataset:

$ cat << EOT > notes.txt
One can create a new dataset with 'datalad create [--description] PATH'.
The dataset is created empty

EOT

Run datalad status to confirm that there is a new, untracked file:

$ datalad status
untracked: notes.txt (file)

Save the current state of this file in your dataset’s history. Because it is the only modification in
the dataset, there is no need to specify a path.

$ datalad save -m "Add notes on datalad create"
add(ok): notes.txt (file)
save(ok): . (dataset)
action summary:
add (ok: 1)
save (ok: 1)

But now, let’s see how changing tracked content works. Modify this file by adding another note.
After all, you already know how to use datalad save, so write a short summary on that as well.

Again, the example below uses Unix commands (cat and redirecting, this time however with
>> to append new content to the existing file) to accomplish this, but you can take any editor of
your choice.

6.3. Modify content 37

https://en.wikipedia.org/wiki/Standard_streams#Standard_input_(stdin)
https://en.wikipedia.org/wiki/Cat_(Unix)
https://en.wikipedia.org/wiki/Standard_streams#Standard_output_(stdout)
https://en.wikipedia.org/wiki/Standard_streams#Standard_output_(stdout)

The DataLad Handbook, Release 0.12.0+519.g04985082

$ cat << EOT >> notes.txt
The command "datalad save [-m] PATH" saves the file
(modifications) to history. Note to self:
Always use informative, concise commit messages.

EOT

Let’s check the dataset’s current state:

$ datalad status
modified: notes.txt (file)

and save the file in DataLad:

$ datalad save -m "add note on datalad save"
add(ok): notes.txt (file)
save(ok): . (dataset)
action summary:
add (ok: 1)
save (ok: 1)

Let’s take another look into our history to see the development of this file. We’re using git log
-p -n 2 to see last two commits and explore the difference to the previous state of a file within
each commit.

$ git log -p -n 2
commit 12ced25277c47d5f52946937ef28df87e61b3d42
Author: Elena Piscopia <elena@example.net>
Date: Mon Feb 17 08:49:29 2020 +0100

add note on datalad save

diff --git a/notes.txt b/notes.txt
index 3a7a1fe..bfa64d7 100644
--- a/notes.txt
+++ b/notes.txt
@@ -1,3 +1,7 @@
One can create a new dataset with 'datalad create [--description] PATH'.
The dataset is created empty

+The command "datalad save [-m] PATH" saves the file
+(modifications) to history. Note to self:
+Always use informative, concise commit messages.
+

commit 63d50c8818d6982bd158b14e34e1601db03c6a6e
Author: Elena Piscopia <elena@example.net>
Date: Mon Feb 17 08:49:28 2020 +0100

Add notes on datalad create

diff --git a/notes.txt b/notes.txt
new file mode 100644

We can see that the history can not only show us the commit message attached to a commit,
but also the precise change that occurred in the text file in the commit. Additions are marked

6.3. Modify content 38

The DataLad Handbook, Release 0.12.0+519.g04985082

with a +, and deletions would be shown with a leading -. From the dataset’s history, we can
therefore also find out how the text file evolved over time. That’s quite neat, isn’t it?

Find out more

git log has many more useful options
git log, as many other Git commands, has a good number of options which you can
discover if you run git log --help. Those options could help to find specific changes
(e.g., which added or removed a specific word with -S), or change how git log output
will look (e.g., --word-diff to highlight individual word changes in the -p output).

6.4 Install datasets

So far, we have created a DataLad-101 course dataset. We saved some additional readings into
the dataset, and have carefully made and saved notes on the DataLad commands we discovered.
Up to this point, we therefore know the typical, local workflow to create and populate a dataset
from scratch.

But we’ve been told that with DataLad we could very easily get vast amounts of data to our
computer. Rumor has it that this would be only a single command in the terminal! Therefore,
everyone in today’s lecture excitedly awaits today’s topic: Installing datasets.

“With DataLad, users can install clones of existing DataLad datasets from paths, URLs, or open-
data collections” our lecturer begins. “This makes accessing data fast and easy. A dataset that
others could install can be created by anyone, without a need for additional software. Your
own datasets can be installed by others, should you want that, for example. Therefore, not only
accessing data becomes fast and easy, but also sharing.” “That’s so cool!”, you think. “Exam
preparation will be a piece of cake if all of us can share our mid-term and final projects easily!”
“But today, let’s only focus on how to install a dataset”, she continuous. “Damn it! Can we not
have longer lectures?”, you think and set alarms to all of the upcoming lecture dates in your
calendar. There is so much exciting stuff to come, you can not miss a single one.

“Psst!” a student from the row behind reaches over. “There are a bunch of audio recordings of
a really cool podcast, and they have been shared in the form of a DataLad dataset! Shall we try
whether we can install that?”

“Perfect! What a great way to learn how to install a dataset. Doing it now instead of looking at
slides for hours is my preferred type of learning anyway”, you think as you fire up your terminal
and navigate into your DataLad-101 dataset.

In this demonstration, we’re using one of the many openly available datasets that DataLad pro-
vides in a public registry that anyone can access. One of these datasets is a collection of audio
recordings of a great podcast, the longnow seminar series57. It consists of audio recordings
about long-term thinking, and while the DataLad-101 course is not a long-term thinking sem-
inar, those recordings are nevertheless a good addition to the large stash of yet-to-read text
books we piled up. Let’s get this dataset into our existing DataLad-101 dataset.

To keep the DataLad-101 dataset neat and organized, we first create a new directory, called
recordings.

57 The longnow podcasts are lectures and conversations on long-term thinking produced by the LongNow foun-
dation and we can wholeheartedly recommend them for their worldly wisdoms and compelling, thoughtful ideas.
Subscribe to the podcasts at http://longnow.org/seminars/podcast. Support the foundation by becoming a member:
https://longnow.org/membership. http://longnow.org

6.4. Install datasets 39

http://longnow.org/seminars/podcast
https://longnow.org/membership
http://longnow.org

The DataLad Handbook, Release 0.12.0+519.g04985082

we are in the root of DataLad-101
$ mkdir recordings

There are two commands that can be used to obtain a dataset: datalad install
(datalad-install manual) and datalad clone (datalad-clone manual). Throughout this
handbook, we will use datalad clone to obtain datasets. The command has a less complex
structure but slightly simplified behavior, and a hidden section in section Looking without touch-
ing (page 83) will elaborate on the differences between the two commands. Let’s install the
longnow podcasts in this new directory with datalad clone.

The command takes a location of an existing dataset to clone. This source can be a URL or a
path to a local directory, or an SSH server56. The dataset to be installed lives on GitHub, at
https://github.com/datalad-datasets/longnow-podcasts.git, and we can give its GitHub URL as
the first positional argument. Optionally, the command also takes as second positional argument
a path to the destination, – a path to where we want to install the dataset to. In this case it is
recordings/longnow. Because we are installing a dataset (the podcasts) into an existing dataset
(the DataLad-101 dataset), we also supply a -d/--dataset flag to the command. This specifies
the dataset to perform the operation on, and allows us to install the podcasts as a subdataset of
DataLad-101. Because we are in the root of the DataLad-101 dataset, the pointer to the dataset
is a . (which is Unix’ way of saying “current directory”).

As before with long commands, we line break the code below with a \. You can copy it as it is
presented here into your terminal, but in your own work you can write commands like this into
a single line.

$ datalad clone --dataset . \
https://github.com/datalad-datasets/longnow-podcasts.git recordings/longnow
[INFO] Cloning dataset to Dataset(/home/me/dl-101/DataLad-101/recordings/longnow)
[INFO] Attempting to clone from https://github.com/datalad-datasets/longnow-podcasts.git␣
→˓to /home/me/dl-101/DataLad-101/recordings/longnow
[INFO] Start enumerating objects
[INFO] Start counting objects
[INFO] Start compressing objects
[INFO] Start receiving objects
[INFO] Start resolving deltas
[INFO] Completed clone attempts for Dataset(/home/me/dl-101/DataLad-101/recordings/
→˓longnow)
[INFO] Remote origin not usable by git-annex; setting annex-ignore
install(ok): recordings/longnow (dataset)
add(ok): recordings/longnow (file)
add(ok): .gitmodules (file)
save(ok): . (dataset)
action summary:
add (ok: 2)
install (ok: 1)
save (ok: 1)

This command copied the repository found at the URL https://github.com/datalad-datasets/
longnow-podcasts.git into the existing DataLad-101 dataset, into the directory recordings/
longnow. The optional destination is helpful: If we had not specified the path recordings/
longnow as a destination for the dataset clone, the command would have installed the dataset
into the root of the DataLad-101 dataset, and instead of longnow it would have used the name

56 Additionally, a source can also be a pointer to an open-data collection, for example the DataLad superdataset
/// – more on what this is and how to use it later, though.

6.4. Install datasets 40

https://github.com/datalad-datasets/longnow-podcasts.git
https://github.com/datalad-datasets/longnow-podcasts.git
https://github.com/datalad-datasets/longnow-podcasts.git

The DataLad Handbook, Release 0.12.0+519.g04985082

of the remote repository “longnow-podcasts”. But the coolest feature of datalad clone is yet
invisible: This command also recorded where this dataset came from, thus capturing its ori-
gin as provenance. Even though this is not obvious at this point in time, later chapters in this
handbook will demonstrate how useful this information can be.

Find out more

Do I have to install from the root of datasets?
No. Instead of from the root of the DataLad-101 dataset, you could have also installed
the dataset from within the recordings, or books directory. In the case of installing
datasets into existing datasets you however need to adjust the paths that are given with
the -d/--dataset option: -d needs to specify the path to the root of the dataset. This
is important to keep in mind whenever you do not execute the clone command from
the root of this dataset. Luckily, there is a shortcut: -d^ will always point to root of the
top-most dataset. For example, if you navigate into recordings the command would be:

datalad clone -d^ https://github.com/datalad-datasets/longnow-podcasts.git longnow

Find out more

What if I do not install into an existing dataset?
If you do not install into an existing dataset, you only need to omit the -d/--dataset
option. You can try:

datalad clone https://github.com/datalad-datasets/longnow-podcasts.git

anywhere outside of your DataLad-101 dataset to install the podcast dataset into a new
directory called longnow-podcasts. You could even do this inside of an existing dataset.
However, whenever you install datasets into of other datasets, the -d/--dataset option is
necessary to not only install the dataset, but also register it automatically into the higher
level superdataset. The upcoming section will elaborate on this.

Note for Git users

The datalad clone command uses git clone. A dataset that is installed from an existing
source, e.g., a path or URL, is the DataLad equivalent of a clone in Git.

Here is the repository structure:

$ tree -d # we limit the output to directories
.

books
recordings

longnow
Long_Now__Conversations_at_The_Interval
Long_Now__Seminars_About_Long_term_Thinking

5 directories

We can see that recordings has one subdirectory, our newly installed longnow dataset.
Within the dataset are two other directories, Long_Now__Conversations_at_The_Interval and
Long_Now__Seminars_About_Long_term_Thinking. If we navigate into one of them and list its
content, we’ll see many .mp3 files (here is an excerpt).

6.4. Install datasets 41

The DataLad Handbook, Release 0.12.0+519.g04985082

$ cd recordings/longnow/Long_Now__Seminars_About_Long_term_Thinking
$ ls
2003_11_15__Brian_Eno__The_Long_Now.mp3
2003_12_13__Peter_Schwartz__The_Art_Of_The_Really_Long_View.mp3
2004_01_10__George_Dyson__There_s_Plenty_of_Room_at_the_Top__Long_term_Thinking_About_
→˓Large_scale_Computing.mp3
2004_02_14__James_Dewar__Long_term_Policy_Analysis.mp3
2004_03_13__Rusty_Schweickart__The_Asteroid_Threat_Over_the_Next_100_000_Years.mp3
2004_04_10__Daniel_Janzen__Third_World_Conservation__It_s_ALL_Gardening.mp3
2004_05_15__David_Rumsey__Mapping_Time.mp3
2004_06_12__Bruce_Sterling__The_Singularity__Your_Future_as_a_Black_Hole.mp3
2004_07_10__Jill_Tarter__The_Search_for_Extra_terrestrial_Intelligence__Necessarily_a_
→˓Long_term_Strategy.mp3
2004_08_14__Phillip_Longman__The_Depopulation_Problem.mp3
2004_09_11__Danny_Hillis__Progress_on_the_10_000_year_Clock.mp3
2004_10_16__Paul_Hawken__The_Long_Green.mp3
2004_11_13__Michael_West__The_Prospects_of_Human_Life_Extension.mp3

Dataset content identity and availability information

Surprised, you turn to your fellow student and wonder about how fast the dataset was installed.
Should a download of that many .mp3 files not take much more time?

Here you can see another import feature of DataLad datasets and the datalad clone command:
Upon installation of a DataLad dataset, DataLad retrieves only small files (for example text files
or markdown files) and (small) metadata information about the dataset. It does not, however,
download any large files (yet). The metadata exposes the dataset’s file hierarchy for exploration
(note how you are able to list the dataset contents with ls), and downloading only this metadata
speeds up the installation of a DataLad dataset of many TB in size to a few seconds. Just now,
after installing, the dataset is small in size:

$ cd ../ # in longnow/
$ du -sh # Unix command to show size of contents
3.7M .

This is tiny indeed!

If you executed the previous ls command in your own terminal, you might have seen the .mp3
files highlighted in a different color than usually. On your computer, try to open one of the .mp3
files. You will notice that you cannot open any of the audio files. This is not your fault: None of
these files exist on your computer yet.

Wait, what?

This sounds strange, but it has many advantages. Apart from a fast installation, it allows you
to retrieve precisely the content you need, instead of all the contents of a dataset. Thus, even if
you install a dataset that is many TB in size, it takes up only few MB of space after the install,
and you can retrieve only those components of the dataset that you need.

Let’s see how large the dataset would be in total if all of the files were present. For this, we
supply an additional option to datalad status. Make sure to be (anywhere) inside of the
longnow dataset to execute the following command:

6.4. Install datasets 42

The DataLad Handbook, Release 0.12.0+519.g04985082

$ datalad status --annex
236 annex'd files (15.4 GB recorded total size)
nothing to save, working tree clean

Woah! More than 200 files, totaling more than 15 GB? You begin to appreciate that DataLad
did not download all of this data right away! That would have taken hours given the crappy
internet connection in the lecture hall, and you are not even sure whether your hard drive has
much space left. . .

But you nevertheless are curious on how to actually listen to one of these .mp3s now. So how
does one actually “get” the files?

The command to retrieve file content is datalad get (datalad-get manual). You can specify
one or more specific files, or get all of the dataset by specifying datalad get . (with . denoting
“current directory”).

First, we get one of the recordings in the dataset – take any one of your choice (here, its the
first).

$ datalad get Long_Now__Seminars_About_Long_term_Thinking/2003_11_15__Brian_Eno__The_Long_
→˓Now.mp3
get(ok): Long_Now__Seminars_About_Long_term_Thinking/2003_11_15__Brian_Eno__The_Long_Now.
→˓mp3 (file) [from web...]
Tried to get 1 file that had no content yet. Successfully obtained 1.
/home/me/dl-101/DataLad-101/recordings/longnow/Long_Now__Seminars_About_Long_term_
→˓Thinking/2003_11_15__Brian_Eno__The_Long_Now.mp3 [file] ... ok

Try to open it – it will now work.

If you would want to get the rest of the missing data, instead of specifying all files individually,
we can use . to refer to all of the dataset like this:

$ datalad get .

However, with a total size of more than 15GB, this might take a while, so do not do that now. If
you did execute the command above, interrupt it by pressing CTRL + C – Do not worry, this will
not break anything.

Isn’t that easy? Let’s see how much content is now present locally. For this, datalad status
--annex all has a nice summary:

$ datalad status --annex all
236 annex'd files (35.7 MB/15.4 GB present/total size)
nothing to save, working tree clean

This shows you how much of the total content is present locally. With one file, it is only a
fraction of the total size.

Let’s get a few more recordings, just because it was so mesmerizing to watch DataLad’s fancy
progress bars.

$ datalad get Long_Now__Seminars_About_Long_term_Thinking/2003_11_15__Brian_Eno__The_Long_
→˓Now.mp3 \
Long_Now__Seminars_About_Long_term_Thinking/2003_12_13__Peter_Schwartz__The_Art_Of_The_
→˓Really_Long_View.mp3 \
Long_Now__Seminars_About_Long_term_Thinking/2004_01_10__George_Dyson__There_s_Plenty_of_
→˓Room_at_the_Top__Long_term_Thinking_About_Large_scale_Computing.mp3

(continues on next page)

6.4. Install datasets 43

The DataLad Handbook, Release 0.12.0+519.g04985082

(continued from previous page)

get(ok): Long_Now__Seminars_About_Long_term_Thinking/2004_01_10__George_Dyson__There_s_
→˓Plenty_of_Room_at_the_Top__Long_term_Thinking_About_Large_scale_Computing.mp3 (file)␣
→˓[from web...]
get(ok): Long_Now__Seminars_About_Long_term_Thinking/2003_12_13__Peter_Schwartz__The_Art_
→˓Of_The_Really_Long_View.mp3 (file) [from web...]
Tried to get 3 files that had no content yet. Successfully obtained 2. 1 (failed).
/home/me/dl-101/DataLad-101/recordings/longnow/Long_Now__Seminars_About_Long_term_
→˓Thinking/2004_01_10__George_Dyson__There_s_Plenty_of_Room_at_the_Top__Long_term_
→˓Thinking_About_Large_scale_Computing.mp3 [file] ... ok
/home/me/dl-101/DataLad-101/recordings/longnow/Long_Now__Seminars_About_Long_term_
→˓Thinking/2003_12_13__Peter_Schwartz__The_Art_Of_The_Really_Long_View.mp3 [file] ... ok
/home/me/dl-101/DataLad-101/recordings/longnow/Long_Now__Seminars_About_Long_term_
→˓Thinking/2003_11_15__Brian_Eno__The_Long_Now.mp3 [file] ... notneeded

Note that any data that is already retrieved (the first file) is not downloaded again. DataLad
summarizes the outcome of the execution of get in the end and informs that the download of
one file was notneeded and the retrieval of the other files was ok.

Note for Git users

datalad get uses git annex get underneath the hood.

Keep whatever you like

“Oh shit, oh shit, oh shit. . . ” you hear from right behind you. Your fellow student apparently
downloaded the full dataset accidentally. “Is there a way to get rid of file contents in dataset,
too?”, they ask. “Yes”, the lecturer responds, “you can remove file contents by using datalad
drop. This is really helpful to save disk space for data you can easily re-obtain, for example”.

The datalad drop command (datalad drop manual) will remove file contents completely from
your dataset. You should only use this command to remove contents that you can get again, or
generate again (for example with next chapter’s datalad run command), or that you really do
not need anymore.

Let’s remove the content of one of the files that we have downloaded, and check what this does
to the total size of the dataset. Here is the current aount of retrieved data in this dataset:

$ datalad status --annex all
236 annex'd files (135.1 MB/15.4 GB present/total size)
nothing to save, working tree clean

We drop a single recording that’s content we previously downloaded with get . . .

$ datalad drop Long_Now__Seminars_About_Long_term_Thinking/2004_01_10__George_Dyson__
→˓There_s_Plenty_of_Room_at_the_Top__Long_term_Thinking_About_Large_scale_Computing.mp3
drop(ok): /home/me/dl-101/DataLad-101/recordings/longnow/Long_Now__Seminars_About_Long_
→˓term_Thinking/2004_01_10__George_Dyson__There_s_Plenty_of_Room_at_the_Top__Long_term_
→˓Thinking_About_Large_scale_Computing.mp3 (file) [checking http://podcast.longnow.org/
→˓salt/redirect/salt-020040109-dyson-podcast.mp3...]

. . . and check the size of the dataset again:

6.4. Install datasets 44

The DataLad Handbook, Release 0.12.0+519.g04985082

$ datalad status --annex all
236 annex'd files (93.5 MB/15.4 GB present/total size)
nothing to save, working tree clean

Dropping the file content of one mp3 file saved roughly 40MB of disk space. Whenever you need
the recording again, it is easy to re-retrieve it:

$ datalad get Long_Now__Seminars_About_Long_term_Thinking/2004_01_10__George_Dyson__There_
→˓s_Plenty_of_Room_at_the_Top__Long_term_Thinking_About_Large_scale_Computing.mp3
get(ok): Long_Now__Seminars_About_Long_term_Thinking/2004_01_10__George_Dyson__There_s_
→˓Plenty_of_Room_at_the_Top__Long_term_Thinking_About_Large_scale_Computing.mp3 (file)␣
→˓[from web...]
Tried to get 1 file that had no content yet. Successfully obtained 1.
/home/me/dl-101/DataLad-101/recordings/longnow/Long_Now__Seminars_About_Long_term_
→˓Thinking/2004_01_10__George_Dyson__There_s_Plenty_of_Room_at_the_Top__Long_term_
→˓Thinking_About_Large_scale_Computing.mp3 [file] ... ok

Re-obtained!

This was only a quick digression into datalad drop. The main principles of this command will
become clear after chapter Under the hood: git-annex (page 74), and its precise use is shown in
the paragraph on removing file contents. At this point in time, however, you already know that
datasets allow you do drop file contents flexibly. If you want to, you could have more podcasts
(or other data) on your computer than you have disk space available by using DataLad datasets
– and that really is a cool feature to have.

Dataset archeology

You have now experienced how easy it is to (re-)obtain shared data with DataLad. But beyond
only sharing the data in the dataset, when sharing or installing a DataLad dataset, all copies
also include the datasets history.

For example, we can find out who created the dataset in the first place (the output shows an
excerpt of git log --reverse, which displays the history from first to most recent commit):

$ git log --reverse
commit 8df130bb825f99135c34b8bf0cbedb1b05edd581
Author: Michael Hanke <michael.hanke@gmail.com>
Date: Mon Jul 16 16:08:23 2018 +0200

[DATALAD] Set default backend for all files to be MD5E

commit 3d0dc8f5e9e4032784bc5a08d243995ad5cf92f9
Author: Michael Hanke <michael.hanke@gmail.com>
Date: Mon Jul 16 16:08:24 2018 +0200

[DATALAD] new dataset

But that’s not all. The seminar series is ongoing, and more recordings can get added to the
original repository shared on GitHub. Because an installed dataset knows the dataset it was
installed from, your local dataset clone can be updated from its origin, and thus get the new
recordings, should there be some. Later in this handbook, we will see examples of this.

Now you can not only create datasets and work with them locally, you can also consume ex-
isting datasets by installing them. Because that’s cool, and because you will use this command

6.4. Install datasets 45

101-136-filesystem.html#removing-annexed-content-entirely

The DataLad Handbook, Release 0.12.0+519.g04985082

frequently, make a note of it into your notes.txt, and datalad save the modification.

in the root of DataLad-101:
$ cd ../../
$ cat << EOT >> notes.txt
The command 'datalad clone URL/PATH [PATH]'
installs a dataset from e.g., a URL or a path.
If you install a dataset into an existing
dataset (as a subdataset), remember to specify the
root of the superdataset with the '-d' option.

EOT
$ datalad save -m "Add note on datalad clone"
add(ok): notes.txt (file)
save(ok): . (dataset)
action summary:
add (ok: 1)
save (ok: 1)

Note: Listing files directly after the installation of a dataset will work if done in a terminal
with ls. However, certain file managers (such as OSX’s Finder58) may fail to display files that
are not yet present locally (i.e., before a datalad get was run). Therefore, be mindful when
exploring a dataset hierarchy with a file manager – it might not show you the available but not
yet retrieved files. More about why this is will be explained in section Data integrity (page 77).

6.5 Dataset nesting

Without noticing, the previous section demonstrated another core principle and feature of Data-
Lad datasets: Nesting.

Within DataLad datasets one can nest other DataLad datasets arbitrarily deep. We for example
just installed one dataset, the longnow podcasts, into another dataset, the DataLad-101 dataset.
This was done by supplying the --dataset/-d flag in the command call.

At first glance, nesting does not seem particularly spectacular – after all, any directory on a file
system can have other directories inside of it.

The possibility for nested Datasets, however, is one of many advantages DataLad datasets have:

One aspect of nested datasets is that any lower-level DataLad dataset (the subdataset) has a
stand-alone history. The top-level DataLad dataset (the superdataset) only stores which version
of the subdataset is currently used.

Let’s dive into that. Remember how we had to navigate into recordings/longnow to see the his-
tory, and how this history was completely independent of the DataLad-101 superdataset history?
This was the subdataset’s own history.

Apart from stand-alone histories of super- or subdatasets, this highlights another very important
advantage that nesting provides: Note that the longnow dataset is a completely independent,
standalone dataset that was once created and published. Nesting allows for a modular re-use

58 You can also upgrade your file manager to display file types in a DataLad datasets (e.g., with the git-annex-turtle
extension59 for Finder)

59 https://github.com/andrewringler/git-annex-turtle

6.5. Dataset nesting 46

https://github.com/andrewringler/git-annex-turtle
https://github.com/andrewringler/git-annex-turtle

The DataLad Handbook, Release 0.12.0+519.g04985082

of any other DataLad dataset, and this re-use is possible and simple precisely because all of the
information is kept within a (sub)dataset.

But now let’s also check out how the superdataset’s (DataLad-101) history looks like after the
addition of a subdataset. To do this, make sure you are outside of the subdataset longnow. Note
that the first commit is our recent addition to notes.txt, so we’ll look at the second most recent
commit in this excerpt.

$ git log -p -n 2
commit 9bb3629f431bb1b34651a55e8c95e49c71035d1e
Author: Elena Piscopia <elena@example.net>
Date: Mon Feb 17 08:49:32 2020 +0100

[DATALAD] Recorded changes

diff --git a/.gitmodules b/.gitmodules
new file mode 100644
index 0000000..37b3468
--- /dev/null
+++ b/.gitmodules
@@ -0,0 +1,5 @@
+[submodule "recordings/longnow"]
+ path = recordings/longnow
+ url = https://github.com/datalad-datasets/longnow-podcasts.git
+ branch = master
+ datalad-id = b3ca2718-8901-11e8-99aa-a0369f7c647e
diff --git a/recordings/longnow b/recordings/longnow
new file mode 160000
index 0000000..dcc34fb
--- /dev/null
+++ b/recordings/longnow
@@ -0,0 +1 @@
+Subproject commit dcc34fbe669b06ced84ced381ba0db21cf5e665f

We have highlighted the important part of this rather long commit summary. Note that you
can not see any .mp3s being added to the dataset, as was previously the case when we datalad
saved PDFs that we downloaded into books/. Instead, DataLad stores what it calls a subproject
commit of the subdataset. The cryptic character sequence in this line is the shasum we have
briefly mentioned before, and it is how DataLad internally identifies files and changes to files.
Exactly this shasum is what describes the state of the subdataset.

Navigate back into longnow and try to find the highlighted shasum in the subdataset’s history:

$ cd recordings/longnow
$ git log --oneline
dcc34fb Update aggregated metadata
36a30a1 [DATALAD RUNCMD] Update from feed
bafdc04 Uniformize JSON-LD context with DataLad's internal extractors
004e484 [DATALAD RUNCMD] .datalad/maint/make_readme.py
7ee3ded Sort episodes newest-first
e829615 Link to the handbook as a source of wisdom
4b37790 Fix README generator to parse correct directory
43fdea1 Add script to generate a README from DataLad metadata
997e07a Update aggregated metadata
8031017 Consolidate all metadata-related files under .datalad
8053eed Add annexed feed logos
1a396a6 Prepare to annex big feed logos

(continues on next page)

6.5. Dataset nesting 47

The DataLad Handbook, Release 0.12.0+519.g04985082

(continued from previous page)

75d7f3f Rename metadata directory
5dd7772 Manually place extracted metadata in Git
b9c517e Make sure extracted metadata is directly in Git
0553111 content removed from git annex
39226e9 Update aggregated metadata
740fa14 [DATALAD RUNCMD] Update from feed
61f46fc Add base dataset metadata
3e96466 More diff-able
979bd25 Single update maintainer script
ead809e Be resilient with different delimiters
9bece59 Add duration to the metadata
f0831b9 Script to convert the RSS feed metadata into JSON-LD metadata
e64d00f Prepare for addition of RSS feed metadata on episodes
e1bf31e [DATALAD RUNCMD] Update SALT series
21d9290 [DATALAD RUNCMD] Update Interval seminar series
7f36dea Update from feed
ff00713 Update from feed
a052af9 Include publication date in the filename
9f3127f Import Interval feed
b81bdea Import SALT feed
3d0dc8f [DATALAD] new dataset
8df130b [DATALAD] Set default backend for all files to be MD5E

We can see that it is the most recent commit shasum of the subdataset (albeit we can see only
the first seven characters here – a git log would show you the full shasum). Thus, your dataset
does not only know the origin of its subdataset, but also its version, i.e., it has an identifier of
the stage of the subdatasets evolution. This is what is meant by “the top-level DataLad dataset
(the superdataset) only stores which version of the subdataset is currently used”.

Importantly, once we learn how to make use of the history of a dataset, we can set subdatasets
to previous states, or update them.

Find out more

Do I have to navigate into the subdataset to see it’s history?
Previously, we used cd to navigate into the subdataset, and subsequently opened the
Git log. This is necessary, because a git log in the superdataset would only return the
superdatasets history. While moving around with cd is straightforward, you also found it
slightly annoying from time to time to use the cd command so often and also to remember
in which directory you currently are in. There is one trick, though: git -C (note that it is
a capital C) lets you perform any Git command in a provided path. Providing this option
together with a path to a Git command let’s you run the command as if Git was started
in this path instead of the current working directory. Thus, from the root of DataLad-101,
this command would have given you the subdataset’s history as well:

$ git -C recordings/longnow log --oneline

In the upcoming sections, we’ll experience the perks of dataset nesting frequently, and every-
thing that might seem vague at this point will become clearer. To conclude this demonstration,
the figure below illustrates the current state of the dataset and nesting schematically:

6.5. Dataset nesting 48

The DataLad Handbook, Release 0.12.0+519.g04985082

sub-ds

 super-ds
Dataset structure is fully flexible
to be able to accommodate
domain standards or personal
preferences. !

!
DataLad can obtain required
subdataset content on demand.
Only content elements actually
required for an analysis are
present. Directory structure is
expanded recursively as needed.

A dataset can be populated with
any type of files, and these files
can be saved to the dataset. !
Published repositories can be
installed as subdatasets. This
nesting can be arbitrily deep.
Datasets can be installed from a
path, URL., or data collection.!

Any content is referenced via
the dataset that contains it.
Dataset state provides unambi-
guous version specification for
the subdataset.!

DataLad-101/
books/

TLCL.pdf
recordings/

notes.txt

byte-of-python.pdf

longnow/
Long_Now__Conv[...]/

...

progit.pdf

Long_Now__Seminars[...]/

...
2003_11_15[...]
2003_12_13[...]

Thus, without being consciously aware of it, by taking advantage of dataset nesting, we took a
dataset longnow and installed it as a subdataset within the superdataset DataLad-101.

If you have executed the above code snippets, make sure to go back into the root of the dataset
again:

$ cd ../../

6.6 Summary

In the last few sections, we have discovered the basics of starting a DataLad dataset from scratch,
and making simple modifications locally.

• An empty dataset can be created with the datalad create command. It’s useful to add
a description to the dataset and use the -c text2git configuration, but we will see later
why. This is the command structure:

datalad create --description "here is a description" -c text2git PATH

• Thanks to Git and git-annex, the dataset has a history to track files and their modifications.
Built-in Git tools (git log) or external tools (such as tig) allow to explore the history.

• The datalad save command records the current state of the dataset to the history. Make it
a habit to specify a concise commit message to summarize the change. If several unrelated
modifications exist in your dataset, specify the path to the precise file (change) that should
be saved to history. Remember, if you run a datalad save without specifying a path, all
untracked files and all file changes will be committed to the history together! This is the
command structure:

6.6. Summary 49

The DataLad Handbook, Release 0.12.0+519.g04985082

datalad save -m "here is a commit message" [PATH]

• The typical local workflow is simple: Modify the dataset by adding or modifying files, save
the changes as meaningful units to the history, repeat:

Fig. 1: A simple, local version control workflow with DataLad.

• datalad status reports the current state of the dataset. It’s a very helpful command you
should run frequently to check for untracked or modified content.

• datalad download-url can retrieve files from websources and save them automatically
to your dataset. This does not only save you the time of one datalad save, but it also
records the source of the file as hidden provenance information.

Furthermore, we have discovered the basics of installing a published DataLad dataset, and
experienced the concept of modular nesting datasets.

• A published dataset can be installed with the datalad clone command:

$ datalad clone [--dataset PATH] SOURCE-PATH/URL [DESTINATION PATH]

It can be installed “on its own”, or within an existing dataset.

• The command takes a location of an existing dataset as a positional argument, and option-
ally a path to where you want the dataset to be installed. If you do not specify a path, the
dataset will be installed into the current directory, with the original name of the dataset.

• If a dataset is installed inside of a dataset as a subdataset, the --dataset/-d option needs
to specify the root of the superdataset.

• The source can be a URL (for example of a GitHub repository, as in section Install datasets
(page 39)), but also paths, or open data collections.

• After datalad clone, only small files and metadata about file availability are present
locally. To retrieve actual file content of larger files, datalad get PATH downloads large
file content on demand.

• datalad status --annex or datalad status --annex all are helpful to determine total
repository size and the amount of data that is present locally.

• Remember: Super- and subdatasets have standalone histories. A superdataset only stores
which version of the subdataset is currently used.

Now what I can do with that?

Simple, local workflows allow you to version control changing small files, for example your CV,
your code, or a book that you are working on, but you can also add very large files to your
datasets history. Currently, this can be considered “best-practice building”: Frequent datalad

6.6. Summary 50

The DataLad Handbook, Release 0.12.0+519.g04985082

status commands, datalad save commands to save dataset modifications, and concise commit
messages are the main take aways from this. You can already explore the history of a dataset
and you know about many types of provenance information captured by DataLad, but for now,
its been only informative, and has not been used for anything more fancy. Later on, we will look
into utilizing the history in order to undo mistakes, how the origin of files or datasets becomes
helpful when sharing datasets or removing file contents, and how to make changes to large
content (as opposed to small content we have been modifying so far).

Additionally, you learned the basics on extending the DataLad-101 dataset and consuming ex-
isting datasets: You have procedurally experienced how to install a dataset, and simultaneously
you have learned a lot about the principles and features of DataLad datasets. Cloning datasets
and getting their content allows you to consume published datasets. By nesting datasets within
each other, you can re-use datasets in a modular fashion. While this may appear abstract,
upcoming sections will demonstrate many examples of why this can be handy.

6.6. Summary 51

CHAPTER

SEVEN

DATALAD, RUN!

7.1 Keeping track

In previous examples, with the exception of datalad download-url, all changes that happened
to the dataset or the files it contains were saved to the dataset’s history by hand. We added
larger and smaller files and saved them, and we also modified smaller file contents and saved
these modifications.

52

The DataLad Handbook, Release 0.12.0+519.g04985082

Often, however, files get changed by shell commands or by scripts. Consider a data scientist60.
She has data files with numeric data, and code scripts in Python, R, Matlab or any other pro-
gramming language that will use the data to compute results or figures. Such output is stored
in new files, or modifies existing files.

But only a few weeks after these scripts were executed she finds it hard to remember which
script was modified for which reason or created which output. How did this result came to be?
Which script would she need to run again on which data to produce this particular figure?

In this section we will experience how DataLad can help to record the changes in a dataset
after executing a script from the shell. Just as datalad download-url was able to associate a
file with its origin and store this information, we want to be able to associate a particular file
with the commands, scripts, and inputs it was produced from, and thus capture and store full
provenance.

Let’s say, for example, that you enjoyed the longnow podcasts a lot, and you start a podcast-
night with friends to wind down from all of the exciting DataLad lectures. They propose to
make a list of speakers and titles to cross out what they’ve already listened to, and ask you to
prepare such a list.

“Mhh. . . probably there is a DataLad way to do this. . . wasn’t there also a note about metadata
extraction at some point?” But as we’re not that far into the lectures, you decide to write a short
shell script to generate a text file that lists speaker and title name instead.

To do this, we’re following a best practice that will reappear in the later section on YODA
principles: Collecting all additional scripts that work with content of a subdataset outside of this
subdataset, in a dedicated code/ directory, and collating the output of the execution of these
scripts outside of the subdataset as well – and therefore not modifying the subdataset.

The motivation behind this will become clear in later sections, but for now we’ll start with
best-practice building. Therefore, create a subdirectory code/ in the DataLad-101 superdataset:

$ mkdir code
$ tree -d
.

books
code
recordings

longnow
Long_Now__Conversations_at_The_Interval
Long_Now__Seminars_About_Long_term_Thinking

6 directories

Inside of DataLad-101/code, create a simple shell script list_titles.sh. This script will carry
out a simple task: It will loop through the file names of the .mp3 files and write out speaker
names and talk titles in a very basic fashion. The content of this script is written below – the
cat command will write it into the script.

$ cat << EOT > code/list_titles.sh
for i in recordings/longnow/Long_Now__Seminars*/*.mp3; do

get the filename
base=\$(basename "\$i");
strip the extension

(continues on next page)

60 https://xkcd.com/1838/

7.1. Keeping track 53

https://xkcd.com/1838/
101-127-yoda.html
101-127-yoda.html

The DataLad Handbook, Release 0.12.0+519.g04985082

(continued from previous page)

base=\${base%.mp3};
date as yyyy-mm-dd
printf "\${base%%__*}\t" | tr '_' '-';
name and title without underscores
printf "\${base#*__}\n" | tr '_' ' ';

done
EOT

Save this script to the dataset.

$ datalad status
untracked: code (directory)

$ datalad save -m "Add short script to write a list of podcast speakers and titles"
add(ok): code/list_titles.sh (file)
save(ok): . (dataset)
action summary:
add (ok: 1)
save (ok: 1)

Once we run this script, it will simply print dates, names and titles to your terminal. We can
save its outputs to a new file recordings/podcasts.tsv in the superdataset by redirecting these
outputs with bash code/list_titles.sh > recordings/podcasts.tsv.

Obviously, we could create this file, and subsequently save it to the superdataset. However, just
as in the example about the data scientist, in a bit of time, we will forget how this file came into
existence, or that the script code/list_titles.sh is associated with this file, and can be used
to update it later on.

The datalad run command (datalad-run manual) can help with this. Put simply, it records a
command’s impact on a dataset. Put more technically, it will record a shell command, and save
all changes this command triggered in the dataset – be that new files or changes to existing
files.

Let’s try the simplest way to use this command: datalad run, followed by a commit message
(-m "a concise summary"), and the command that executes the script from the shell: bash
code/list_titles.sh > recordings/podcasts.tsv. It is helpful to enclose the command in
quotation marks.

Note that we execute the command from the root of the superdataset. It is recommended to
use datalad run in the root of the dataset you want to record the changes in, so make sure to
run this command from the root of DataLad-101.

$ datalad run -m "create a list of podcast titles" "bash code/list_titles.sh > recordings/
→˓podcasts.tsv"
[INFO] == Command start (output follows) =====
[INFO] == Command exit (modification check follows) =====
add(ok): recordings/podcasts.tsv (file)
save(ok): . (dataset)
action summary:
add (ok: 1)
save (notneeded: 1, ok: 1)

7.1. Keeping track 54

The DataLad Handbook, Release 0.12.0+519.g04985082

Find out more

Why is there a “notneeded” in the command summary?
If you have stumbled across the command execution summary save (notneeded: 1,
ok: 1) and wondered what is “notneeded”: the datalad save at the end of a datalad
run will query all potential subdatasets recursively for modifications, and as there are no
modifications in the longnow subdataset, this part of save returns a “notneeded” sum-
mary. Thus, after a datalad run, you’ll get a “notneeded” for every subdataset with no
modifications in the execution summary.

Let’s take a look into the history:

$ git log -p -n 1
commit 4bf7418ceacc3deb3c533c75b4c030b272cb644a
Author: Elena Piscopia <elena@example.net>
Date: Mon Feb 17 08:50:04 2020 +0100

[DATALAD RUNCMD] create a list of podcast titles

=== Do not change lines below ===
{
"chain": [],
"cmd": "bash code/list_titles.sh > recordings/podcasts.tsv",
"dsid": "ed80af32-5159-11ea-a727-6533dd7bb2c6",
"exit": 0,
"extra_inputs": [],
"inputs": [],
"outputs": [],
"pwd": "."

}
^^^ Do not change lines above ^^^

diff --git a/recordings/podcasts.tsv b/recordings/podcasts.tsv
new file mode 100644
index 0000000..f691b53
--- /dev/null
+++ b/recordings/podcasts.tsv
@@ -0,0 +1,206 @@
+2003-11-15 Brian Eno The Long Now
+2003-12-13 Peter Schwartz The Art Of The Really Long View
+2004-01-10 George Dyson There s Plenty of Room at the Top Long term Thinking␣
→˓About Large scale Computing
+2004-02-14 James Dewar Long term Policy Analysis

The commit message we have supplied with -m directly after datalad run appears in our history
as a short summary. Additionally, the output of the command, recordings/podcasts.tsv, was
saved right away.

But there is more in this log entry, a section in between the markers

=== Do not change lines below === and

^^^ Do not change lines above ^^^.

This is the so-called run record – a recording of all of the information in the datalad run
command, generated by DataLad. In this case, it is a very simple summary. One informative
part is highlighted: "cmd": "bash code/list_titles.sh" is the command that was run in the

7.1. Keeping track 55

The DataLad Handbook, Release 0.12.0+519.g04985082

terminal. This information therefore maps the command, and with it the script, to the output
file, in one commit. Nice, isn’t it?

Arguably, the run record is not the most human-readable way to display information. This rep-
resentation however is less for the human user (the human user should rely on their informative
commit message), but for DataLad, in particular for the datalad rerun command, which you
will see in action shortly. This run record is machine-readable provenance that associates an
output with the command that produced it.

You have probably already guessed that every datalad run command ends with a datalad save.
A logical consequence from this fact is that any datalad run does not result in any changes in
a dataset (no modification of existing content; no additional files) will not produce any record
in the dataset’s history (just as a datalad save with no modifications present will not create a
history entry). Try to run the exact same command as before, and check whether anything in
your log changes:

$ datalad run -m "Try again to create a list of podcast titles" "bash code/list_titles.sh␣
→˓> recordings/podcasts.tsv"
[INFO] == Command start (output follows) =====
[INFO] == Command exit (modification check follows) =====
action summary:
save (notneeded: 2)

$ git log --oneline
4bf7418 [DATALAD RUNCMD] create a list of podcast titles
42387da Add short script to write a list of podcast speakers and titles
72f6a7d Add note on datalad clone
9bb3629 [DATALAD] Recorded changes

The most recent commit is still the datalad run command from before, and there was no second
datalad run commit created.

The datalad run can therefore help you to keep track of what you are doing in a dataset and
capture provenance of your files: When, by whom, and how exactly was a particular file created
or modified? The next sections will demonstrate how to make use of this information, and also
how to extend the command with additional arguments that will prove to be helpful over the
course of this chapter.

7.2 DataLad, Re-Run!

So far, you created a .tsv file of all speakers and talk titles in the longnow/ podcasts subdataset.
Let’s actually take a look into this file now:

$ less recordings/podcasts.tsv
2003-11-15 Brian Eno The Long Now
2003-12-13 Peter Schwartz The Art Of The Really Long View
2004-01-10 George Dyson There s Plenty of Room at the Top Long term Thinking␣
→˓About Large scale Computing
2004-02-14 James Dewar Long term Policy Analysis
2004-03-13 Rusty Schweickart The Asteroid Threat Over the Next 100 000 Years
2004-04-10 Daniel Janzen Third World Conservation It s ALL Gardening
2004-05-15 David Rumsey Mapping Time
2004-06-12 Bruce Sterling The Singularity Your Future as a Black Hole

(continues on next page)

7.2. DataLad, Re-Run! 56

The DataLad Handbook, Release 0.12.0+519.g04985082

(continued from previous page)

2004-07-10 Jill Tarter The Search for Extra terrestrial Intelligence Necessarily␣
→˓a Long term Strategy
2004-08-14 Phillip Longman The Depopulation Problem
2004-09-11 Danny Hillis Progress on the 10 000 year Clock
2004-10-16 Paul Hawken The Long Green
2004-11-13 Michael West The Prospects of Human Life Extension
2004-12-04 Ken Dychtwald The Consequences of Human Life Extension
2005-01-15 James Carse Religious War In Light of the Infinite Game
2005-02-26 Roger Kennedy The Political History of North America from 25 000 BC to␣
→˓12 000 AD
2005-03-12 Spencer Beebe Very Long term Very Large scale Biomimicry
2005-04-09 Stewart Brand Cities Time
2005-06-11 Robert Neuwirth The 21st Century Medieval City
2005-07-16 Jared Diamond How Societies Fail And Sometimes Succeed
2005-08-13 Robert Fuller Patient Revolution Human Rights Past and Future
2005-09-24 Ray Kurzweil Kurzweil s Law
2005-10-06 Esther Dyson Freeman Dyson George Dyson The Difficulty of Looking␣
→˓Far Ahead
2005-11-15 Clay Shirky Making Digital Durable What Time Does to Categories
2005-12-10 Sam Harris The View from the End of the World
2006-01-14 Ralph Cavanagh Peter Schwartz Nuclear Power Climate Change and the␣
→˓Next 10 000 Years
2006-02-14 Stephen Lansing Perfect Order A Thousand Years in Bali
2006-03-11 Kevin Kelly The Next 100 Years of Science Long term Trends in the␣
→˓Scientific Method.
2006-04-15 Jimmy Wales Vision Wikipedia and the Future of Free Culture

Not too bad, and certainly good enough for the podcast night people. What’s been cool about
creating this file is that it was created with a script within a datalad run command. Thanks to
datalad run, the output file podcasts.tsv is associated with the script it generated.

Upon reviewing the list you realized that you made a mistake, though: you only listed the talks
in the SALT series (the Long_Now__Seminars_About_Long_term_Thinking/ directory), but not in
the Long_Now__Conversations_at_The_Interval/ directory. Let’s fix this in the script. Replace
the contents in code/list_titles.sh with the following, fixed script:

$ cat << EOT >| code/list_titles.sh
for i in recordings/longnow/Long_Now*/*.mp3; do

get the filename
base=\$(basename "\$i");
strip the extension
base=\${base%.mp3};
printf "\${base%%__*}\t" | tr '_' '-';
name and title without underscores
printf "\${base#*__}\n" | tr '_' ' ';

done
EOT

Because the script is now modified, save the modifications to the dataset. We can use the
shorthand “BF” to denote “Bug fix” in the commit message.

$ datalad status
modified: code/list_titles.sh (file)

7.2. DataLad, Re-Run! 57

The DataLad Handbook, Release 0.12.0+519.g04985082

$ datalad save -m "BF: list both directories content" code/list_titles.sh
add(ok): code/list_titles.sh (file)
save(ok): . (dataset)
action summary:
add (ok: 1)
save (ok: 1)

What we could do is run the same datalad run command as before to recreate the file, but now
with all of the contents:

do not execute this!
$ datalad run -m "create a list of podcast titles" "bash code/list_titles.sh > recordings/
→˓podcasts.tsv"

However, think about any situation where the command would be longer than this, or that is
many months past the first execution. It would not be easy to remember the command, nor
would it be very convenient to copy it from the run record.

Luckily, a fellow student remembered the DataLad way of re-executing a run command, and
he’s eager to show it to you.

“In order to re-execute a datalad run command, find the commit and use its shasum (or a
tag, or anything else that Git understands) as an argument for the datalad rerun command
(datalad-rerun manual)! That’s it!”, he says happily.

So you go ahead and find the commit shasum in your history:

$ git log -n 2
commit 2dd044ac4013a64dd3f872ac9b203b5b868160ac
Author: Elena Piscopia <elena@example.net>
Date: Mon Feb 17 08:50:06 2020 +0100

BF: list both directories content

commit 4bf7418ceacc3deb3c533c75b4c030b272cb644a
Author: Elena Piscopia <elena@example.net>
Date: Mon Feb 17 08:50:04 2020 +0100

[DATALAD RUNCMD] create a list of podcast titles

Take that shasum and paste it after datalad rerun (the first 6-8 characters of the shasum would
be sufficient, here we’re using all of them).

$ datalad rerun 4bf7418ceacc3deb3c533c75b4c030b272cb644a
[INFO] == Command start (output follows) =====
[INFO] == Command exit (modification check follows) =====
add(ok): recordings/podcasts.tsv (file)
save(ok): . (dataset)
action summary:
add (ok: 1)
save (notneeded: 1, ok: 1)
unlock (notneeded: 1)

Now DataLad has made use of the run record, and re-executed the original command based
on the information in it. Because we updated the script, the output podcasts.tsv has changed
and now contains the podcast titles of both subdirectories. You’ve probably already guessed it,

7.2. DataLad, Re-Run! 58

The DataLad Handbook, Release 0.12.0+519.g04985082

but the easiest way to check whether a datalad rerun has changed the desired output file is to
check whether the rerun command appears in the datasets history: If a datalad rerun does not
add or change any content in the dataset, it will also not be recorded in the history.

$ git log -n 1
commit c317c6fb28633a1ca1940eee2c0c541bd62c6c7b
Author: Elena Piscopia <elena@example.net>
Date: Mon Feb 17 08:50:07 2020 +0100

[DATALAD RUNCMD] create a list of podcast titles

=== Do not change lines below ===
{
"chain": [
"4bf7418ceacc3deb3c533c75b4c030b272cb644a"
],
"cmd": "bash code/list_titles.sh > recordings/podcasts.tsv",
"dsid": "ed80af32-5159-11ea-a727-6533dd7bb2c6",
"exit": 0,
"extra_inputs": [],
"inputs": [],
"outputs": [],
"pwd": "."

}
^^^ Do not change lines above ^^^

In the dataset’s history, we can see that a new datalad run was recorded. This action is com-
mitted by DataLad under the original commit message of the run command, and looks just like
the previous datalad run commit apart from the execution time.

Two cool tools that go beyond the git log are the datalad diff (datalad-diff manual) and
git diff commands. Both commands can report differences between two states of a dataset.
Thus, you can get an overview of what changed between two commits. Both commands have a
similar, but not identical structure: datalad diff compares one state (a commit specified with
-f/--from, by default the latest change) and another state from the dataset’s history (a commit
specified with -t/--to). Let’s do a datalad diff between the current state of the dataset and
the previous commit (called “HEAD~1” in Git terminology61):

$ datalad diff --to HEAD~1
modified: recordings/podcasts.tsv (file)

This indeed shows the output file as “modified”. However, we do not know what exactly
changed. This is a task for git diff (get out of the diff view by pressing q):

$ git diff HEAD~1
diff --git a/recordings/podcasts.tsv b/recordings/podcasts.tsv
index f691b53..d77891d 100644
--- a/recordings/podcasts.tsv
+++ b/recordings/podcasts.tsv
@@ -1,3 +1,31 @@
+2017-06-09 How Digital Memory Is Shaping Our Future Abby Smith Rumsey
+2017-06-09 Pace Layers Thinking Stewart Brand Paul Saffo
+2017-06-09 Proof The Science of Booze Adam Rogers
+2017-06-09 Seveneves at The Interval Neal Stephenson

(continues on next page)

61 The section Back and forth in time (page 213) will elaborate more on common git commands and terminology.

7.2. DataLad, Re-Run! 59

The DataLad Handbook, Release 0.12.0+519.g04985082

(continued from previous page)

+2017-06-09 Talking with Robots about Architecture Jeffrey McGrew
+2017-06-09 The Red Planet for Real Andy Weir
+2017-07-03 Transforming Perception One Sense at a Time Kara Platoni
+2017-08-01 How Climate Will Evolve Government and Society Kim Stanley Robinson
+2017-09-01 Envisioning Deep Time Jonathon Keats
+2017-10-01 Thinking Long term About the Evolving Global Challenge The Refugee␣
→˓Reality
+2017-11-01 The Web In An Eye Blink Jason Scott
+2017-12-01 Ideology in our Genes The Biological Basis for Political Traits Rose␣
→˓McDermott
+2017-12-07 Can Democracy Survive the Internet Nathaniel Persily
+2018-01-02 The New Deal You Don t Know Louis Hyman
+2018-02-01 Humanity and the Deep Ocean James Nestor
+2018-03-01 Our Future in Algorithm Farming Mike Kuniavsky
+2018-04-18 The Organized Pursuit of Knowledge Margaret Levi
+2018-08-15 Facts Feelings and Stories How to Motivate Action on Climate Change ␣
→˓Shahzeen Attari
+2019-03-26 Charting the High Frontier of Space Ed Lu
+2019-04-04 The Science of Climate Fiction Can Stories Lead to Social Action ␣
→˓James Holland Jones
+2019-04-10 The Spirit Singularity Science and the Afterlife at the Turn of the␣
→˓20th Century Hannu Rajaniemi
+2019-04-18 The Evolving Science of Behavior Change Christopher Bryan
+2019-04-30 Siberia A Journey to the Mammoth Steppe Stewart Brand Kevin Kelly ␣
→˓Alexander Rose
+2019-05-06 Can Nationalism be a Resource for Democracy Maya Tudor
+2019-05-14 Growing Up Ape The Long term Science of Studying Our Closest Living␣
→˓Relatives Elizabeth Lonsdorf
+2019-05-21 Time Poverty Amidst Digital Abundance Judy Wajcman
+2019-06-07 A Foundation of Trust Building a Blockchain Future Brian Behlendorf
+2019-07-12 Learning From Le Guin Kim Stanley Robinson
2003-11-15 Brian Eno The Long Now
2003-12-13 Peter Schwartz The Art Of The Really Long View
2004-01-10 George Dyson There s Plenty of Room at the Top Long term Thinking␣
→˓About Large scale Computing

This output actually shows the precise changes between the contents created with the first
version of the script and the second script with the bug fix. All of the files that are added after
the second directory was queried as well are shown in the diff, preceded by a +.

Quickly create a note about these two helpful commands in notes.txt:

$ cat << EOT >> notes.txt
There are two useful functions to display changes between two
states of a dataset: "datalad diff -f/--from COMMIT -t/--to COMMIT"
and "git diff COMMIT COMMIT", where COMMIT is a shasum of a commit
in the history.

EOT

Finally, save this note.

$ datalad save -m "add note datalad and git diff"
add(ok): notes.txt (file)
save(ok): . (dataset)
action summary:

(continues on next page)

7.2. DataLad, Re-Run! 60

The DataLad Handbook, Release 0.12.0+519.g04985082

(continued from previous page)

add (ok: 1)
save (ok: 1)

Note that datalad rerun can re-execute the run records of both a datalad run or a datalad
rerun command, but not with any other type of datalad command in your history such as a
datalad save on results or outputs after you executed a script. Therefore, make it a habit to
record the execution of scripts by plugging it into datalad run.

This very basic example of a datalad run is as simple as it can get, but it is already convenient
from a memory-load perspective: Now you do not need to remember the commands or scripts
involved in creating an output. DataLad kept track of what you did, and you can instruct it to
“rerun” it. Also, incidentally, we have generated provenance information. It is now recorded
in the history of the dataset how the output podcasts.tsv came into existence. And we can
interact with and use this provenance information with other tools than from the machine-
readable run record. For example, to find out who (or what) created or modified a file, give
the file path to git log (prefixed by --):

$ git log -- recordings/podcasts.tsv
commit c317c6fb28633a1ca1940eee2c0c541bd62c6c7b
Author: Elena Piscopia <elena@example.net>
Date: Mon Feb 17 08:50:07 2020 +0100

[DATALAD RUNCMD] create a list of podcast titles

=== Do not change lines below ===
{
"chain": [
"4bf7418ceacc3deb3c533c75b4c030b272cb644a"
],
"cmd": "bash code/list_titles.sh > recordings/podcasts.tsv",
"dsid": "ed80af32-5159-11ea-a727-6533dd7bb2c6",
"exit": 0,
"extra_inputs": [],
"inputs": [],
"outputs": [],
"pwd": "."

}
^^^ Do not change lines above ^^^

commit 4bf7418ceacc3deb3c533c75b4c030b272cb644a
Author: Elena Piscopia <elena@example.net>
Date: Mon Feb 17 08:50:04 2020 +0100

[DATALAD RUNCMD] create a list of podcast titles

=== Do not change lines below ===
{
"chain": [],
"cmd": "bash code/list_titles.sh > recordings/podcasts.tsv",
"dsid": "ed80af32-5159-11ea-a727-6533dd7bb2c6",
"exit": 0,
"extra_inputs": [],
"inputs": [],
"outputs": [],
"pwd": "."

(continues on next page)

7.2. DataLad, Re-Run! 61

The DataLad Handbook, Release 0.12.0+519.g04985082

(continued from previous page)

}
^^^ Do not change lines above ^^^

Neat, isn’t it?

Still, this datalad run was very simple. The next section will demonstrate how datalad run
becomes handy in more complex standard use cases: situations with locked contents.

But prior to that, make a note about datalad run and datalad rerun in your notes.txt file.

$ cat << EOT >> notes.txt
The datalad run command can record the impact a script or command has on a Dataset.
In its simplest form, datalad run only takes a commit message and the command that
should be executed.

Any datalad run command can be re-executed by using its commit shasum as an argument
in datalad rerun CHECKSUM. DataLad will take information from the run record of the␣
→˓original
commit, and re-execute it. If no changes happen with a rerun, the command will not be␣
→˓written
to history. Note: you can also rerun a datalad rerun command!

EOT

Finally, save this note.

$ datalad save -m "add note on basic datalad run and datalad rerun"
add(ok): notes.txt (file)
save(ok): . (dataset)
action summary:
add (ok: 1)
save (ok: 1)

7.3 Input and output

In the previous two sections, you created a simple .tsv file of all speakers and talk titles in
the longnow/ podcasts subdataset, and you have re-executed a datalad run command after a
bug-fix in your script.

But these previous datalad run and datalad rerun command were very simple. Maybe you
noticed some values in the run record were empty: inputs and outputs for example did not
have an entry. Let’s experience a few situations in which these two arguments can become
necessary.

In our DataLad-101 course we were given a group assignment. Everyone should give a small
presentation about an open DataLad dataset they found. Conveniently, you decided to settle for
the longnow podcasts right away. After all, you know the dataset quite well already, and after
listening to almost a third of the podcasts and enjoying them a lot, you also want to recommend
them to the others.

Almost all of the slides are ready, but what’s still missing is the logo of the longnow podcasts.
Good thing that this is part of the subdataset, so you can simply retrieve it from there.

7.3. Input and output 62

The DataLad Handbook, Release 0.12.0+519.g04985082

The logos (one for the SALT series, one for the Interval series – the two directories in the
subdataset) were originally extracted from the podcasts metadata information by DataLad. In
a while, we will dive into the metadata aggregation capabilities of DataLad, but for now, let’s
just use the logos instead of finding out where they come from – this will come later. As part
of the metadata of the dataset, the logos are in the hidden paths .datalad/feed_metadata/
logo_salt.jpg and .datalad/feed_metadata/logo_interval.jpg:

$ ls recordings/longnow/.datalad/feed_metadata/*jpg
recordings/longnow/.datalad/feed_metadata/logo_interval.jpg
recordings/longnow/.datalad/feed_metadata/logo_salt.jpg

For the slides you decide to prepare images of size 400x400 px, but the logos’ original size is
much larger (both are 3000x3000 pixel). Therefore let’s try to resize the images – currently,
they’re far too large to fit on a slide.

To resize an image from the command line we can use the Unix command convert -resize
from the ImageMagick tool62. The command takes a new size in pixels as an argument, a path
to the file that should be resized, and a filename and path under which a new, resized image will
be saved. To resize one image to 400x400 px, the command would thus be convert -resize
400x400 path/to/file.jpg path/to/newfilename.jpg.

Remembering the last lecture on datalad run, you decide to plug this into datalad run. Even
though this is not a script, it is a command, and you can wrap commands like this conveniently
with datalad run. Because they will be quite long, we line break the commands in the upcoming
examples for better readability – in your terminal, you can always write the commands into a
single line.

$ datalad run -m "Resize logo for slides" \
"convert -resize 400x400 recordings/longnow/.datalad/feed_metadata/logo_salt.jpg␣
→˓recordings/salt_logo_small.jpg"
[INFO] == Command start (output follows) =====
convert-im6.q16: unable to open image `recordings/longnow/.datalad/feed_metadata/logo_
→˓salt.jpg': No such file or directory @ error/blob.c/OpenBlob/2874.
convert-im6.q16: no images defined `recordings/salt_logo_small.jpg' @ error/convert.c/
→˓ConvertImageCommand/3258.
[INFO] == Command exit (modification check follows) =====
[INFO] The command had a non-zero exit code. If this is expected, you can save the␣
→˓changes with 'datalad save -d . -r -F .git/COMMIT_EDITMSG'
CommandError: command 'convert -resize 400x400 recordings/longnow/.datalad/feed_metadata/
→˓logo_salt.jpg recordings/salt_logo_small.jpg' failed with exitcode 1
Failed to run 'convert -resize 400x400 recordings/longnow/.datalad/feed_metadata/logo_
→˓salt.jpg recordings/salt_logo_small.jpg' under '/home/me/dl-101/DataLad-101'. Exit␣
→˓code=1.
stdout=
stderr=

Oh, crap! Why didn’t this work?

Let’s take a look at the error message DataLad provides. In general, these error messages might
seem wordy, and maybe a bit intimidating as well, but usually they provide helpful information
to find out what is wrong. Whenever you encounter an error message, make sure to read it,
even if it feels like a mushroom cloud exploded in your terminal.

A datalad run error message has several parts. The first starts after

62 https://imagemagick.org/index.php

7.3. Input and output 63

https://imagemagick.org/index.php

The DataLad Handbook, Release 0.12.0+519.g04985082

[INFO] == Command start (output follows) =====.

This is displaying errors that the terminal command threw: The convert tool complains that it
can not open the file, because there is “No such file or directory”.

The second part starts after

[INFO] == Command exit (modification check follows) =====.

DataLad adds information about a “non-zero exit code”. A non-zero exit code indicates that
something went wrong64. In principle, you could go ahead and google what this specific exit
status indicates. However, the solution might have already occurred to you when reading the
first error report: The file is not present.

How can that be?

“Right!”, you exclaim with a facepalm. Just as the .mp3 files, the .jpg file content is not present
locally after a datalad clone, and we did not datalad get it yet!

This is where the -i/--input option for a datalad run becomes useful. The content of everything
that is specified as an input will be retrieved prior to running the command.

$ datalad run -m "Resize logo for slides" \
--input "recordings/longnow/.datalad/feed_metadata/logo_salt.jpg" \
"convert -resize 400x400 recordings/longnow/.datalad/feed_metadata/logo_salt.jpg␣
→˓recordings/salt_logo_small.jpg"
or shorter:
$ datalad run -m "Resize logo for slides" \
-i "recordings/longnow/.datalad/feed_metadata/logo_salt.jpg" \
"convert -resize 400x400 recordings/longnow/.datalad/feed_metadata/logo_salt.jpg␣
→˓recordings/salt_logo_small.jpg"
[INFO] Making sure inputs are available (this may take some time)
[INFO] == Command start (output follows) =====
[INFO] == Command exit (modification check follows) =====
get(ok): recordings/longnow/.datalad/feed_metadata/logo_salt.jpg (file) [from web...]
add(ok): recordings/salt_logo_small.jpg (file)
save(ok): . (dataset)
action summary:
add (ok: 1)
get (notneeded: 1, ok: 1)
save (notneeded: 1, ok: 1)

Cool! You can see in this output that prior to the data command execution, DataLad did a
datalad get. This is useful for several reasons. For one, it saved us the work of manually
getting content. But moreover, this is useful for anyone with whom we might share the dataset:
With an installed dataset one can very simply rerun datalad run commands if they have the
input argument appropriately specified. It is therefore good practice to specify the inputs appro-
priately. Remember from section Install datasets (page 39) that datalad get will only retrieve
content if it is not yet present, all input already downloaded will not be downloaded again – so
specifying inputs even though they are already present will not do any harm.

64 In shell programming, commands exit with a specific code that indicates whether they failed, and if so, how.
Successful commands have the exit code zero. All failures have exit codes greater than zero. A few lines lower,
DataLad even tells us the specific error code: The command failed with exit code 1.

7.3. Input and output 64

The DataLad Handbook, Release 0.12.0+519.g04985082

Find out more

What if there are several inputs?
Often, a command needs several inputs. In principle, every input gets its own -i/--input
flag. However, you can make use of globbing. For example,

datalad run --input "*.jpg" "COMMAND"

will retrieve all .jpg files prior to command execution.

If outputs already exist. . .

Looking at the resulting image, you wonder whether 400x400 might be a tiny bit to small.
Maybe we should try to resize it to 450x450, and see whether that looks better?

Note that we can not use a datalad rerun for this: if we want to change the dimension option
in the command, we have to define a new datalad run command.

To establish best-practices, let’s specify the input even though it is already present:

$ datalad run -m "Resize logo for slides" \
--input "recordings/longnow/.datalad/feed_metadata/logo_salt.jpg" \
"convert -resize 450x450 recordings/longnow/.datalad/feed_metadata/logo_salt.jpg␣
→˓recordings/salt_logo_small.jpg"
or shorter:
$ datalad run -m "Resize logo for slides" \
-i "recordings/longnow/.datalad/feed_metadata/logo_salt.jpg" \
"convert -resize 450x450 recordings/longnow/.datalad/feed_metadata/logo_salt.jpg␣
→˓recordings/salt_logo_small.jpg"
[INFO] Making sure inputs are available (this may take some time)
[INFO] == Command start (output follows) =====
convert-im6.q16: unable to open image `recordings/salt_logo_small.jpg': Permission denied␣
→˓@ error/blob.c/OpenBlob/2874.
[INFO] == Command exit (modification check follows) =====
[INFO] The command had a non-zero exit code. If this is expected, you can save the␣
→˓changes with 'datalad save -d . -r -F .git/COMMIT_EDITMSG'
CommandError: command 'convert -resize 450x450 recordings/longnow/.datalad/feed_metadata/
→˓logo_salt.jpg recordings/salt_logo_small.jpg' failed with exitcode 1
Failed to run 'convert -resize 450x450 recordings/longnow/.datalad/feed_metadata/logo_
→˓salt.jpg recordings/salt_logo_small.jpg' under '/home/me/dl-101/DataLad-101'. Exit␣
→˓code=1.
stdout=
stderr=

Oh wtf. . . What is it now?

A quick glimpse into the error message shows a different error than before: The tool complains
that it is “unable to open” the image, because the “Permission [is] denied”.

We have not seen anything like this before, and we need to turn to our lecturer for help. Con-
fused about what we might have done wrong, we raise our hand to ask the instructor for help.
Knowingly, she smiles, and tells you about how DataLad protects content given to it:

“Content in your DataLad dataset is protected by git-annex from accidental changes” our in-
structor begins.

7.3. Input and output 65

The DataLad Handbook, Release 0.12.0+519.g04985082

“Wait!” we interrupt. “First off, that wasn’t accidental. And second, I was told this course does
not have git-annex-101 as a prerequisite?”

“Yes, hear me out” she says. “I promise you two different solutions at the end of this explanation,
and the concept behind this is quite relevant”.

DataLad usually gives content to git-annex to store and track. git-annex, let’s just say, takes this
task really seriously. One of its features that you have just experienced is that it locks content.

If files are locked down, their content can not be modified. In principle, that’s not a bad thing:
It could be your late grandma’s secret cherry-pie recipe, and you do not want to accidentally
change that. Therefore, a file needs to be consciously unlocked to apply modifications.

In the attempt to resize the image to 450x450 you tried to overwrite recordings/
salt_logo_small.jpg, a file that was given to DataLad and thus protected by git-annex.

There is a DataLad command that takes care of unlocking file content, and thus making locked
files modifiable again: datalad unlock (datalad-unlock manual). Let us check out what it
does:

$ datalad unlock recordings/salt_logo_small.jpg
unlock(ok): recordings/salt_logo_small.jpg (file)

Well, unlock(ok) does not sound too bad for a start. As always, we feel the urge to run a
datalad status on this:

$ datalad status
modified: recordings/salt_logo_small.jpg (symlink)

“Ah, do not mind that for now”, our instructor says, and with a wink she continues: “We’ll talk
about symlinks and object trees a while later”. You are not really sure whether that’s a good
thing, but you have a task to focus on. Hastily, you run the command right from the terminal:

$ convert -resize 450x450 recordings/longnow/.datalad/feed_metadata/logo_salt.jpg␣
→˓recordings/salt_logo_small.jpg

Hey, no permission denied error! You note that the instructor still stands right next to you.
“Sooo. . . now what do I do to lock the file again?” you ask.

“Well. . . what you just did there was quite suboptimal. Didn’t you want to use datalad run?
But, anyway, in order to lock the file again, you would need to run a datalad save.”

$ datalad save -m "resized picture by hand"
add(ok): recordings/salt_logo_small.jpg (file)
save(ok): . (dataset)
action summary:
add (ok: 1)
save (ok: 1)

“So”, you wonder aloud, “whenever I want to modify I need to datalad unlock it, do the
modifications, and then datalad save it?”

“Well, this is certainly one way of doing it, and a completely valid workflow if you would do
that outside of a datalad run command. But within datalad run there is actually a much easier
way of doing this. Let’s use the --output argument.”

datalad run retrieves everything that is specified as --input prior to command execution, and
it unlocks everything specified as --output prior to command execution. Therefore, whenever

7.3. Input and output 66

The DataLad Handbook, Release 0.12.0+519.g04985082

the output of a datalad run command already exists and is tracked, it should be specified as an
argument in the -o/--output option.

Find out more

But what if I have a lot of outputs?
The use case here is simplistic – a single file gets modified. But there are commands
and tools that create full directories with many files as an output, for example FSL63, a
neuro-imaging tool. The easiest way to specify this type of output is the directory name
and a globbing character, such as -o directory/*. And, just as for -i/--input, you could
use multiple --output specifications.

63 https://fsl.fmrib.ox.ac.uk/fsl/fslwiki

In order to execute datalad run with both the -i/--input and -o/--output flag and see their
magic, let’s crop the second logo, logo_interval.jpg:

$ datalad run -m "Resize logo for slides" \
--input "recordings/longnow/.datalad/feed_metadata/logo_interval.jpg" \
--output "recordings/interval_logo_small.jpg" \
"convert -resize 450x450 recordings/longnow/.datalad/feed_metadata/logo_interval.jpg␣
→˓recordings/interval_logo_small.jpg"

or shorter:
$ datalad run -m "Resize logo for slides" \
-i "recordings/longnow/.datalad/feed_metadata/logo_interval.jpg" \
-o "recordings/interval_logo_small.jpg" \
"convert -resize 450x450 recordings/longnow/.datalad/feed_metadata/logo_interval.jpg␣
→˓recordings/interval_logo_small.jpg"
[INFO] Making sure inputs are available (this may take some time)
[INFO] == Command start (output follows) =====
[INFO] == Command exit (modification check follows) =====
get(ok): recordings/longnow/.datalad/feed_metadata/logo_interval.jpg (file) [from web...]
add(ok): recordings/interval_logo_small.jpg (file)
save(ok): . (dataset)
action summary:
add (ok: 1)
get (notneeded: 1, ok: 1)
save (notneeded: 1, ok: 1)

This time, with both --input and --output options specified, DataLad informs about the
datalad get operations it performs prior to the command execution, and datalad run executes
the command successfully. It does not inform about any datalad unlock operation, because
the output recordings/interval_logo_small.jpg does not exist before the command is run.
Should you rerun this command however, the summary will include a statement about content
unlocking. You will see an example of this in the next section.

Note now how many individual commands a datalad run saves us: datalad get, datalad
unlock, and datalad save! But even better: Beyond saving time now, running commands
reproducibly and recorded with datalad run saves us plenty of time in the future as soon as we
want to rerun a command, or find out how a file came into existence.

With this last code snippet, you have experienced a full datalad run command: commit mes-
sage, input and output definitions (the order in which you give those two options is irrelevant),
and the command to be executed. Whenever a command takes input or produces output you
should specify this with the appropriate option.

7.3. Input and output 67

https://fsl.fmrib.ox.ac.uk/fsl/fslwiki

The DataLad Handbook, Release 0.12.0+519.g04985082

Make a note of this behavior in your notes.txt file.

$ cat << EOT >> notes.txt
You should specify all files that a command takes as input with an -i/--input flag. These
files will be retrieved prior to the command execution. Any content that is modified or
produced by the command should be specified with an -o/--output flag. Upon a run or rerun
of the command, the contents of these files will get unlocked so that they can be␣
→˓modified.

EOT

Placeholders

Just after writing this note, you have to relax your fingers a bit. “Man, this was so much typing.
Not only did I need to specify the inputs and outputs, I also had to repeat all of these lengthy
paths in the command line call. . . ” you think.

There is a neat little trick to spare you half of this typing effort, though: Placeholders for inputs
and outputs. This is how it works:

Instead of running

$ datalad run -m "Resize logo for slides" \
--input "recordings/longnow/.datalad/feed_metadata/logo_interval.jpg" \
--output "recordings/interval_logo_small.jpg" \
"convert -resize 450x450 recordings/longnow/.datalad/feed_metadata/logo_interval.jpg␣
→˓recordings/interval_logo_small.jpg"

you could shorten this to

$ datalad run -m "Resize logo for slides" \
--input "recordings/longnow/.datalad/feed_metadata/logo_interval.jpg" \
--output "recordings/interval_logo_small.jpg" \
"convert -resize 450x450 {inputs} {outputs}"

The placeholder {inputs} will expand to the path given as --input, and the placeholder
{outputs} will expand to the path given as --output. This means instead of writing the full
paths in the command, you can simply reuse the --input and --output specification done be-
fore.

Find out more

What if I have multiple inputs or outputs?
If multiple values are specified, e.g., as in

$ datalad run -m "move a few files around" \
--input "file1" --input "file2" --input "file3" \
--output "directory_a/" \
"mv {inputs} {outputs}"

the values will be joined by a space like this:

$ datalad run -m "move a few files around" \
--input "file1" --input "file2" --input "file3" \
--output "directory_a/" \
"mv file1 file2 file3 directory_a/"

7.3. Input and output 68

The DataLad Handbook, Release 0.12.0+519.g04985082

The order of the values will match that order from the command line.
If you use globs for input specification, as in

$ datalad run -m "move a few files around" \
--input "file*" \
--output "directory_a/" \
"mv {inputs} {outputs}"

the globs will expanded in alphabetical order (like bash):

$ datalad run -m "move a few files around" \
--input "file1" --input "file2" --input "file3" \
--output "directory_a/" \
"mv file1 file2 file3 directory_a/"

If the command only needs a subset of the inputs or outputs, individual values can be
accessed with an integer index, e.g., {inputs[0]} for the very first input.

Find out more

. . . wait, what if I need a { or } character in my datalad run call?
If your command call involves a { or } character, you will need to escape this brace
character by doubling it, i.e., {{ or }}.

7.4 Clean desk

Just now you realize that you need to fit both logos onto the same slide. “Ah, damn, I might
then really need to have them 400 by 400 pixel to fit”, you think. “Good that I know how to not
run into the permission denied errors anymore!”

Therefore, we need to do the datalad run command yet again - we wanted to have the image
in 400x400 px size. “Now this definitely will be the last time I’m running this”, you think.

$ datalad run -m "Resize logo for slides" \
--input "recordings/longnow/.datalad/feed_metadata/logo_interval.jpg" \
--output "recordings/interval_logo_small.jpg" \
"convert -resize 400x400 recordings/longnow/.datalad/feed_metadata/logo_interval.jpg␣
→˓recordings/interval_logo_small.jpg"
run(impossible): /home/me/dl-101/DataLad-101 (dataset) [clean dataset required to detect␣
→˓changes from command; use `datalad status` to inspect unsaved changes]

Oh for f**** sake. . . run is “impossible”?

Weird. After the initial annoyance about yet another error message faded, and you read on,
DataLad informs that a “clean dataset” is required. Run a datalad status to see what is meant
by this:

$ datalad status
modified: notes.txt (file)

Ah right. We forgot to save the notes we added, and thus there are unsaved modifications
present in DataLad-101. But why is this a problem?

7.4. Clean desk 69

The DataLad Handbook, Release 0.12.0+519.g04985082

By default, at the end of a datalad run is a datalad save. Remember the section on Populate
a dataset (page 30): A general datalad save without a path specification will save all of the
modified or untracked contents to the dataset.

Therefore, in order to not mix any changes in the dataset that are unrelated to the command
plugged into datalad run, by default it will only run on a clean dataset with no changes or
untracked files present.

There are two ways to get around this error message: The more obvious – and recommended –
one is to save the modifications, and run the command in a clean dataset. We will try this way
with the logo_interval.jpg. It would look like this: First, save the changes,

$ datalad save -m "add additional notes on run options"
add(ok): notes.txt (file)
save(ok): . (dataset)
action summary:
add (ok: 1)
save (ok: 1)

and then try again:

$ datalad run -m "Resize logo for slides" \
--input "recordings/longnow/.datalad/feed_metadata/logo_interval.jpg" \
--output "recordings/interval_logo_small.jpg" \
"convert -resize 400x400 recordings/longnow/.datalad/feed_metadata/logo_interval.jpg␣
→˓recordings/interval_logo_small.jpg"
[INFO] Making sure inputs are available (this may take some time)
[INFO] == Command start (output follows) =====
[INFO] == Command exit (modification check follows) =====
unlock(ok): recordings/interval_logo_small.jpg (file)
add(ok): recordings/interval_logo_small.jpg (file)
save(ok): . (dataset)
action summary:
add (ok: 1)
get (notneeded: 2)
save (notneeded: 1, ok: 1)
unlock (ok: 1)

Note how in this execution of datalad run, output unlocking was actually necessary and Data-
Lad provides a summary of this action in its output.

Add a quick addition to your notes about this way of cleaning up prior to a datalad run:

$ cat << EOT >> notes.txt
Important! If the dataset is not "clean" (a datalad status output is empty),
datalad run will not work - you will have to save modifications present in your
dataset.
EOT

A way of executing a datalad run despite an “unclean” dataset, though, is to add the --explicit
flag to datalad run. We will try this flag with the remaining logo_salt.jpg. Note that we have
an “unclean dataset” again because of the additional note in notes.txt.

$ datalad run -m "Resize logo for slides" \
--input "recordings/longnow/.datalad/feed_metadata/logo_salt.jpg" \
--output "recordings/salt_logo_small.jpg" \
--explicit \

(continues on next page)

7.4. Clean desk 70

The DataLad Handbook, Release 0.12.0+519.g04985082

(continued from previous page)

"convert -resize 400x400 recordings/longnow/.datalad/feed_metadata/logo_salt.jpg␣
→˓recordings/salt_logo_small.jpg"
[INFO] Making sure inputs are available (this may take some time)
[INFO] == Command start (output follows) =====
[INFO] == Command exit (modification check follows) =====
unlock(ok): recordings/salt_logo_small.jpg (file)
add(ok): recordings/salt_logo_small.jpg (file)
save(ok): . (dataset)
action summary:
add (ok: 1)
get (notneeded: 2)
save (ok: 1)
unlock (ok: 1)

With this flag, DataLad considers the specification of inputs and outputs to be “explicit”. It
does not warn if the repository is dirty, but importantly, it only saves modifications to the listed
outputs (which is a problem in the vast amount of cases where one does not exactly know which
outputs are produced).

Note: The --explicit flag has to be given anywhere prior to the command that should be run
– the command needs to be the last element of a datalad run call.

A datalad status will show that your previously modified notes.txt is still modified:

$ datalad status
modified: notes.txt (file)

Add an additional note on the --explicit flag, and finally save your changes to notes.txt.

$ cat << EOT >> notes.txt
A suboptimal alternative is the --explicit flag,
used to record only those changes done
to the files listed with --output flags.

EOT

$ datalad save -m "add note on clean datasets"
add(ok): notes.txt (file)
save(ok): . (dataset)
action summary:
add (ok: 1)
save (ok: 1)

To conclude this section on datalad run, take a look at the last datalad run commit to see a
run record with more content:

$ git log -p -n 2
commit baf4fc53bc1e2f68ab8d36ca56aa9b86f9b37482
Author: Elena Piscopia <elena@example.net>
Date: Mon Feb 17 08:50:21 2020 +0100

[DATALAD RUNCMD] Resize logo for slides

(continues on next page)

7.4. Clean desk 71

The DataLad Handbook, Release 0.12.0+519.g04985082

(continued from previous page)

=== Do not change lines below ===
{
"chain": [],
"cmd": "convert -resize 400x400 recordings/longnow/.datalad/feed_metadata/logo_salt.

→˓jpg recordings/salt_logo_small.jpg",
"dsid": "ed80af32-5159-11ea-a727-6533dd7bb2c6",
"exit": 0,
"extra_inputs": [],
"inputs": [
"recordings/longnow/.datalad/feed_metadata/logo_salt.jpg"
],
"outputs": [
"recordings/salt_logo_small.jpg"
],
"pwd": "."

}
^^^ Do not change lines above ^^^

diff --git a/recordings/salt_logo_small.jpg b/recordings/salt_logo_small.jpg
index b6a0a1d..55ada0f 120000
--- a/recordings/salt_logo_small.jpg
+++ b/recordings/salt_logo_small.jpg

7.5 Summary

In the last four sections, we demonstrated how to create a proper datalad run command, and
discovered the concept of locked content.

• datalad run records and saves the changes a command makes in a dataset. That means
that modifications to existing content or new content are associated with a specific com-
mand and saved to the dataset’s history. Essentially, datalad run helps you to keep track
of what you do in your dataset by capturing all provenance.

• A datalad run command generates a run record in the commit. This run record can be
used by datalad to re-execute a command with datalad rerun SHASUM, where SHASUM
is the commit hash of the datalad run command that should be re-executed.

• If a datalad run or datalad rerun does not modify any content, it will not write a record
to history.

• With any datalad run, specify a commit message, and whenever appropriate, specify its
inputs to the executed command (using the -i/--input flag) and/or its output (using the
-o/ --output flag). The full command structure is:

$ datalad run -m "commit message here" --input "path/to/input/" --output "path/to/
→˓output" "command"

• Anything specified as input will be retrieved if necessary with a datalad get prior to
command execution. Anything specified as output will be unlocked prior to modifications.

7.5. Summary 72

The DataLad Handbook, Release 0.12.0+519.g04985082

save all
modifications
of the dataset

- human-readable
 commit message

 - machine-readable
run-record

unlock
output files

for modification
--outputget input data

--input

1
2

2
1

Reproducible execution:
link input, code, and output with

datalad run

datalad run -m "did XY"

Fig. 1: Overview of datalad run.

• Getting and unlocking content is not only convenient for yourself, but enormously helpful
for anyone you share your dataset with, but this will be demonstrated in an upcoming
section in detail.

• To execute a datalad run or datalad rerun, a datalad status either needs to report
that the dataset has no uncommitted changes (the dataset state should be “clean”), or the
command needs to be extended with the --explicit option.

Now what I can do with that?

You have procedurally experienced how to use datalad run and datalad rerun. Both of these
commands make it easier for you and others to associate changes in a dataset with a script or
command, and are helpful as the exact command for a given task is stored by DataLad, and
does not need to be remembered.

Furthermore, by experiencing many common error messages in the context of datalad run
commands, you have gotten some clues on where to look for problems, should you encounter
those errors in your own work.

Lastly, we’ve started to unveil some principles of git-annex that are relevant to understanding
how certain commands work and why certain commands may fail. We have seen that git-
annex locks large files’ content to prevent accidental modifications, and how the --output flag
in datalad run can save us an intermediate datalad unlock to unlock this content. The next
section will elaborate on this a bit more.

7.5. Summary 73

CHAPTER

EIGHT

UNDER THE HOOD: GIT-ANNEX

A closer look at how and why things work

74

The DataLad Handbook, Release 0.12.0+519.g04985082

8.1 Data safety

Later in the day, after seeing and solving so many DataLad error messages, you fall tired into
your bed. Just as you are about to fall asleep, a thought crosses your mind:

“I now know that tracked content in a dataset is protected by git-annex. Whenever tracked
contents are saved, they get locked and should not be modifiable. But. . . what about the notes
that I have been taking since the first day? Should I not need to unlock them before I can modify
them? And also the script! I was able to modify this despite giving it to DataLad to track, with
no permission denied errors whatsoever! How does that work?”

This night, though, your question stays unanswered and you fall into a restless sleep filled with
bad dreams about “permission denied” errors. The next day you’re the first student in your
lecturer’s office hours.

“Oh, you’re really attentive. This is a great question!” our lecturer starts to explain.

Do you remember that we created the DataLad-101 dataset with a specific configuration tem-
plate? It was the -c text2git option we provided in the beginning of Create a dataset (page 28).
It is because of this configuration that we can modify notes.txt without unlocking its content
first.

The second commit message in our datasets history summarizes this:

$ git log --reverse --oneline
dbaf9fa [DATALAD] new dataset
c74e2b7 Instruct annex to add text files to Git
44aa3e2 add books on Python and Unix to read later
393f24f add reference book about git
8d3b831 add beginners guide on bash
63d50c8 Add notes on datalad create
12ced25 add note on datalad save
9bb3629 [DATALAD] Recorded changes
72f6a7d Add note on datalad clone
42387da Add short script to write a list of podcast speakers and titles
4bf7418 [DATALAD RUNCMD] create a list of podcast titles
2dd044a BF: list both directories content
c317c6f [DATALAD RUNCMD] create a list of podcast titles
c3623d0 add note datalad and git diff
523a6b1 add note on basic datalad run and datalad rerun

(continues on next page)

8.1. Data safety 75

The DataLad Handbook, Release 0.12.0+519.g04985082

(continued from previous page)

e8e2e95 [DATALAD RUNCMD] convert -resize 400x400 recordings/longn...
8ffbc4a resized picture by hand
3219d48 [DATALAD RUNCMD] convert -resize 450x450 recordings/longn...
66b01ae add additional notes on run options
a84115d [DATALAD RUNCMD] Resize logo for slides
baf4fc5 [DATALAD RUNCMD] Resize logo for slides
a1f2c3f add note on clean datasets

Instead of giving text files such as your notes or your script to git-annex, the dataset stores it in
Git. But what does it mean if files are in Git instead of git-annex?

Well, procedurally it means that everything that is stored in git-annex is content-locked, and
everything that is stored in Git is not. You can modify content stored in Git straight away,
without unlocking it first.

files given to Git-annex
are write-protected

files given to Git are
not write-protected

modifications can
 be done right away

modifications need
 prior unlocking

Fig. 1: A simplified overview of the tools that manage data in your dataset.

That’s easy enough.

“So, first of all: If we hadn’t provided the -c text2git argument, text files would get content-
locked, too?”. “Yes, indeed. However, there are also ways to later change how file content is
handled based on its type or size. It can be specified in the .gitattributes file, using annex.
largefile options. But there will be a lecture on that65.”

“Okay, well, second: Isn’t it much easier to just not bother with locking and unlocking, and have
everything ‘stored in Git’? Even if datalad run takes care of unlocking content, I do not see the
point of git-annex”, you continue.

Here it gets tricky. To begin with the most important, and most straight-forward fact: It is
not possible to store large files in Git. This is because Git would very quickly run into severe

65 If you cannot wait to read about .gitattributes and other configuration files, jump ahead to chapter Tuning
datasets to your needs (page 108), starting with section DIY configurations (page 108).

8.1. Data safety 76

The DataLad Handbook, Release 0.12.0+519.g04985082

performance issues. For this reason, GitHub, a well-known hosting site for projects using Git,
for example does not allow files larger than 100MB of size.

For now, we have solved the mystery of why text files can be modified without unlocking, and
this is a small improvement in the vast amount of questions that have piled up in our curious
minds. Essentially, git-annex protects your data from accidental modifications and thus keeps
it safe. datalad run commands mitigate any technical complexity of this completely if -o/
--output is specified properly, and datalad unlock commands can be used to unlock content
“by hand” if modifications are performed outside of a datalad run.

But there comes the second, tricky part: There are ways to get rid of locking and unlocking
within git-annex, using so-called adjusted branches. This functionality is dependent on the
git-annex version one has installed, the git-annex version of the repository, and a use-case
dependent comparison of the pros and cons. BUT: it is possible, and in many cases useful,
and in later sections we will see how to use this feature. The next lecture, in any way, will guide
us deeper into git-annex, and improve our understanding a slight bit further.

8.2 Data integrity

So far, we mastered quite a number of challenges: Creating and populating a dataset with
large and small files, modifying content and saving the changes to history, installing datasets,
even as subdatasets within datasets, recording the impact of commands on a dataset with the
run and re-run commands, and capturing plenty of provenance on the way. We further noticed
that when we modified content in notes.txt or list_files.py, the modified content was in a
text file. We learned that this precise type of file, in conjunction with the initial configuration
template text2git we gave to datalad create, is meaningful: As the textfile is stored in Git
and not git-annex, no content unlocking is necessary. As we saw within the demonstrations of
datalad run, modifying content of non-text files, such as .jpgs, requires – spoiler: at least in
our current type of dataset – the additional step of unlocking file content, either by hand with
the datalad unlock command, or within datalad run using the -o/--output flag.

There is one detail about DataLad datasets that we have not covered yet. Its both a crucial aspect
to understanding certain aspects of a dataset, but it is also a potential source of confusion that
we want to eradicate.

You might have noticed already that an ls -l or tree command in your dataset shows small
arrows and quite cryptic paths following each non-text file. Maybe your shell also displays these
files in a different color than text files when listing them. We’ll take a look together, using the
books/ directory as an example:

in the root of DataLad-101
$ cd books
$ tree
.

bash_guide.pdf -> ../.git/annex/objects/WF/Gq/MD5E-s1198170--
→˓0ab2c121bcf68d7278af266f6a399c5f.pdf/MD5E-s1198170--0ab2c121bcf68d7278af266f6a399c5f.pdf

byte-of-python.pdf -> ../.git/annex/objects/F1/Wz/MD5E-s4242644--
→˓f4e1c8ebfb5c89a69ff6d268eb2e63e3.pdf/MD5E-s4242644--f4e1c8ebfb5c89a69ff6d268eb2e63e3.pdf

progit.pdf -> ../.git/annex/objects/G6/Gj/MD5E-s12465653--
→˓05cd7ed561d108c9bcf96022bc78a92c.pdf/MD5E-s12465653--05cd7ed561d108c9bcf96022bc78a92c.
→˓pdf

TLCL.pdf -> ../.git/annex/objects/jf/3M/MD5E-s2120211--
→˓06d1efcb05bb2c55cd039dab3fb28455.pdf/MD5E-s2120211--06d1efcb05bb2c55cd039dab3fb28455.pdf

(continues on next page)

8.2. Data integrity 77

The DataLad Handbook, Release 0.12.0+519.g04985082

(continued from previous page)

0 directories, 4 files

If you do not know what you are looking at, this looks weird, if not worse: intimidating, wrong,
or broken. First of all: no, it is all fine. But let’s start with the basics of what is displayed here
to understand it.

The small -> symbol connecting one path (the book’s name) to another path (the weird se-
quence of characters ending in .pdf) is what is called a symbolic link (short: symlink) or softlink.
It is a term for any file that contains a reference to another file or directory as a relative path or
absolute path. If you use Windows, you are familiar with a related concept: a shortcut.

This means that the files that are in the locations in which you saved content and are named as
you named your files (e.g., TLCL.pdf), do not actually contain your files’ content: they just point
to the place where the actual file content resides.

This sounds weird, and like an unnecessary complication of things. But we will get to why this
is relevant and useful shortly. First, however, where exactly are the contents of the files you
created or saved?

The start of the link path is ../.git. The section Create a dataset (page 28) contained a note that
strongly advised that you to not temper with (or in the worst case, delete) the .git repository
in the root of any dataset. One reason why you should not do this is because this .git directory
is where all of your file content is actually stored.

But why is that? We have to talk a bit git-annex now in order to understand it70.

When a file is saved into a dataset to be tracked, by default – that is in a dataset created without
any configuration template – DataLad gives this file to git-annex. Exceptions to this behavior
can be defined based on

1. file size

2. and/or path/pattern, and thus for example file extensions, or names, or file types (e.g.,
text files, as with the text2git configuration template).

git-annex, in order to version control the data, takes the file content and moves it under .
git/annex/objects – the so called object-tree. It further renames the file into the sequence of
characters you can see in the path, and in its place creates a symlink with the original file name,
pointing to the new location. This process is often referred to as a file being annexed, and the
object tree is also known as the annex of a dataset.

For a demonstration that this file path is not complete gibberish, take the target path of any of
the book’s symlinks and open it, for example with evince <path> (Note: exchange evince with
your standard PDF reader).

evince ../.git/annex/objects/jf/3M/MD5E-s2120211--06d1efcb05bb2c55cd039dab3fb28455.pdf/
→˓MD5E-s2120211--06d1efcb05bb2c55cd039dab3fb28455.pdf

Even though the path looks cryptic, it works and opens the file. Whenever you use a command
like evince TLCL.pdf, internally, your shell will follow the same cryptic symlink like the one
you have just opened.

70 Note, though, that the information below applies to everything that is not an adjusted branch in a git-annex v7
repository – this information does not make sense yet, but it will be an important reference point later on. Just for
the record: Currently, we do not yet have a v7 repository in DataLad-101, and the explanation below applies to our
current dataset.

8.2. Data integrity 78

The DataLad Handbook, Release 0.12.0+519.g04985082

But why does this symlink-ing happen? Up until now, it still seems like a very unnecessary,
superfluous thing to do, right?

The resulting symlinks that look like your files but only point to the actual content in .git/
annex/objects are small in size. An ls -lah reveals that all of these symlinks have roughly the
same, small size of ~130 Bytes:

$ ls -lah
total 24K
drwxr-xr-x 2 adina adina 4.0K Feb 17 08:49 .
drwxr-xr-x 7 adina adina 4.0K Feb 17 08:50 ..
lrwxrwxrwx 1 adina adina 131 Jan 19 2009 bash_guide.pdf -> ../.git/annex/objects/WF/Gq/
→˓MD5E-s1198170--0ab2c121bcf68d7278af266f6a399c5f.pdf/MD5E-s1198170--
→˓0ab2c121bcf68d7278af266f6a399c5f.pdf
lrwxrwxrwx 1 adina adina 131 Apr 19 2017 byte-of-python.pdf -> ../.git/annex/objects/F1/
→˓Wz/MD5E-s4242644--f4e1c8ebfb5c89a69ff6d268eb2e63e3.pdf/MD5E-s4242644--
→˓f4e1c8ebfb5c89a69ff6d268eb2e63e3.pdf
lrwxrwxrwx 1 adina adina 133 Jun 29 2019 progit.pdf -> ../.git/annex/objects/G6/Gj/MD5E-
→˓s12465653--05cd7ed561d108c9bcf96022bc78a92c.pdf/MD5E-s12465653--
→˓05cd7ed561d108c9bcf96022bc78a92c.pdf
lrwxrwxrwx 1 adina adina 131 Jan 28 2019 TLCL.pdf -> ../.git/annex/objects/jf/3M/MD5E-
→˓s2120211--06d1efcb05bb2c55cd039dab3fb28455.pdf/MD5E-s2120211--
→˓06d1efcb05bb2c55cd039dab3fb28455.pdf

Here you can see the reason why content is symlinked: Small file size means that Git can handle
those symlinks! Therefore, instead of large file content, only the symlinks are committed into
Git, and the Git repository thus stays lean. Simultaneously, still, all files stored in Git as symlinks
can point to arbitrarily large files in the object tree. Within the object tree, git-annex handles
file content tracking, and is busy creating and maintaining appropriate symlinks so that your
data can be version controlled just as any text file.

This comes with two very important advantages:

One, should you have copies of the same data in different places of your dataset, the symlinks
of these files point to the same place (in order to understand why this is the case, you will need
to read the hidden section at the end of the page). Therefore, any amount of copies of a piece of
data is only one single piece of data in your object tree. This, depending on how much identical
file content lies in different parts of your dataset, can save you much disk space and time.

The second advantage is less intuitive but clear for users familiar with Git.

Note for Git users

Small symlinks can be written very very fast when switching branches, as opposed to
copying and deleting huge data files.

This leads to a few conclusions:

The first is that you should not be worried to see cryptic looking symlinks in your repository –
this is how it should look. If you are interested in why these paths look so weird, and what all
of this has to do with data integrity, you can check out the hidden section below.

The second is that it should now be clear to you why the .git directory should not be deleted
or in any way modified by hand. This place is where your data are stored, and you can trust git-
annex to be better able to work with the paths in the object tree than you or any other human
are.

8.2. Data integrity 79

The DataLad Handbook, Release 0.12.0+519.g04985082

Lastly, understanding that annexed files in your dataset are symlinked will be helpful to un-
derstand how common file system operations such as moving, renaming, or copying content
translate to dataset modifications in certain situations. Later in this book we will have a section
on how to manage the file system in a DataLad dataset (Miscellaneous file system operations
(page 193)).

Find out more

more about paths, checksums, object trees, and data integrity
But why does the target path to the object tree needs to be so cryptic? Does someone
want to create maximal confusion with this naming? Can’t it be . . . more readable?
Its not malicious intent that leads to these paths and file names. Its checksums. And
they are quite readable – just not for humans, but git-annex. Understanding the next
section is completely irrelevant for the subsequent sections of the book. But it can help
to establish trust in that your data are safely stored and tracked, and it can get certainly
helpful should you be one of those people that always want to understand things in
depth. Also, certain file management operations can be messy – for example, when you
attempt to move a subdirectory (more on this in a dedicated section Miscellaneous file
system operations (page 193)) it can break symlinks, and you need to take appropriate
actions to get the dataset back into a clean state. Understanding more about the object
tree can help to understand such problems, and knowing bits of the git-annex basics can
make you more confident in working with your datasets.
So how do these paths and names come into existence?
When a file is annexed, git-annex generates a key from the file content. It uses this
key (in part) as a name for the file and as the path in the object tree. Thus, the key
is associated with the content of the file (the value), and therefore, using this key, file
content can be identified – or rather: Based on the keys, it can be identified whether two
files have identical contents, and whether file content changed.
The key is generated using hashes. A hash is a function that turns an input (e.g., a PDF
file) into a string of characters with a fixed length. In principle, therefore, the hash
function simply transforms a content of any size into a string with fixed length.
The important aspect of a hash function is that it will generate the same hash for the same
file content, but once file content changes, the generated hash will also look different.
If two files are turned into identical character strings, the content in these files is thus
identical. Therefore, if two files have the same symlink, and thus link the same file in
the object-tree, they are identical in content. If you have many copies of the same data
in your dataset, the object tree will contain only one instance of that content, and all
copies will symlink to it, thus saving disk space. But furthermore, the file name also
becomes a way of ensuring data integrity. File content can not be changed without git-
annex noticing, because the symlink to the file content will change. If you want to read
more about the computer science basics about about hashes check out the Wikipedia
page here66.
This key (or checksum) is the last part of the name of the file the symlink links to (in
which the actual data content is stored). The extension (e.g., .pdf) is appended because
some operating systems (Windows) need this information. The key is also one of the
subdirectory names in the path. This subdirectory adds an important feature to the object-
tree: It revokes the users permissions to modify it. This two-level structure is implemented
because it helps to prevent accidental deletions and changes, and this information will be
helpful to understand some file system management operations (see section Miscellaneous
file system operations (page 193)), for example deleting a subdataset.

8.2. Data integrity 80

https://en.wikipedia.org/wiki/Hash_function

The DataLad Handbook, Release 0.12.0+519.g04985082

take a look at the last part of the target path:
$ ls -lah TLCL.pdf
lrwxrwxrwx 1 adina adina 131 Jan 28 2019 TLCL.pdf -> ../.git/annex/objects/jf/3M/
→˓MD5E-s2120211--06d1efcb05bb2c55cd039dab3fb28455.pdf/MD5E-s2120211--
→˓06d1efcb05bb2c55cd039dab3fb28455.pdf

compare it to the checksum (here of type md5sum) of the PDF file and the␣
→˓subdirectory name
$ md5sum TLCL.pdf
06d1efcb05bb2c55cd039dab3fb28455 TLCL.pdf

There are different hash functions available. Depending on which is used, the resulting
checksum has a certain length and structure. By default, DataLad uses MD5E checksums,
but should you want to, you can change this default to one of many other types67. The
first part of the file name actually states which hash function is used. The reason why
MD5E is used is because it is comparatively short – thus it is possible to share your
datasets also with users on operating systems that have restrictions on total path lengths
(Windows). Therefore, refrain from changing this default if you are on Windows, or want
Windows user to be able to use your dataset.
By now we know where almost all parts of the file name derived from – the remaining
unidentified bit in the file name is the one after the checksum identifier. This part is
the size of the content in bytes. An annexed file in the object tree thus has a file name
following this structure:
checksum-identifier - size -- checksum . extension
As a last puzzle piece to shed some light onto the path in the object tree, there are two
more directories on top of the subdirectory named after the checksum, just after .git/
annex/objects/, consisting of two letters each. These two letters are also derived from
the md5sum of the key, and their sole purpose to exist is to avoid issues with too many
files in one directory (which is a situation that certain file systems have problems with).
In summary, you now know a great deal about git-annex and the object tree. Maybe
you are as amazed as we are about some of the ingenuity used behind the scenes. In
any case, this section was hopefully insightful, and not confusing. If you are still curious
about git-annex, you can check out its documentation68.

66 https://en.wikipedia.org/wiki/Hash_function
67 https://git-annex.branchable.com/backends/
68 https://git-annex.branchable.com/git-annex/

Broken symlinks

Whenever a symlink points to a non-existent target, this symlink is called broken, and opening
the symlink would not work as it does not resolve. The section Miscellaneous file system opera-
tions (page 193) will give a thorough demonstration of how symlinks can break, and how one
can fix them again. Even though broken sounds troublesome, most types of broken symlinks you
will encounter can be fixed, or are not problematic. At this point, you actually have already seen
broken symlinks: Back in section Install datasets (page 39) we explored the file hierarchy in an
installed subdataset that contained many annexed mp3 files. Upon the initial datalad clone,
the annexed files were not present locally. Instead, their symlinks (stored in Git) existed and
allowed to explore which file’s contents could be retrieved. These symlinks point to nothing,
though, as the content isn’t yet present locally, and are thus broken. This state, however, is not
problematic at all. Once the content is retrieved via datalad get, the symlink is functional

8.2. Data integrity 81

https://git-annex.branchable.com/backends/
https://git-annex.branchable.com/git-annex/

The DataLad Handbook, Release 0.12.0+519.g04985082

again.

Nevertheless, it may be important to know that some file managers (e.g., OSX’s Finder) may
not display broken symlinks. In these cases, it will be impossible to browse and explore the file
hierarchy of not-yet-retrieved files with the file manager. You can make sure to always be able
to see the file hierarchy in two seperate ways: Upgrade your file manager to display file types
in a DataLad datasets (e.g., the git-annex-turtle extension69 for Finder). Alternatively, use the
ls command in a terminal instead of a file manager GUI.

Finally, if you are still in the books/ directory, go back into the root of the superdataset.

$ cd ../

69 https://github.com/andrewringler/git-annex-turtle

8.2. Data integrity 82

https://github.com/andrewringler/git-annex-turtle

CHAPTER

NINE

COLLABORATION

9.1 Looking without touching

Only now, several weeks into the DataLad-101 course does your room mate realize that he has
enrolled in the course as well, but has not yet attended at all. “Oh man, can you help me catch
up?” he asks you one day. “Sharing just your notes would be really cool for a start already!”

“Sure thing”, you say, and decide that it’s probably best if he gets all of the DataLad-101 course
dataset. Sharing datasets was something you wanted to look into soon, anyway.

This is one exciting aspect of DataLad datasets that has yet been missing from this course: How
does one share a dataset? In this section, we will cover the simplest way of sharing a dataset:
on a local or shared file system, via an installation with a path as a source.

Note: Interested in sharing datasets publicly? Read this chapter to get a feel for all relevant
basic concepts of sharing datasets. Afterwards, head over to chapter Third party infrastructure
(page 170) to find out how to share a dataset on third-party infrastructure.

In this scenario multiple people can access the very same files at the same time, often on the
same machine (e.g., a shared workstation, or a server that people can “SSH” into). You might

83

The DataLad Handbook, Release 0.12.0+519.g04985082

think: “What do I need DataLad for, if everyone can already access everything?” However,
universal, unrestricted access can easily lead to chaos. DataLad can help facilitate collaboration
without requiring ultimate trust and reliability of all participants. Essentially, with a shared
dataset, collaborators can look and use your dataset without ever touching it.

To demonstrate how to share a DataLad dataset on a common file system, we will pretend that
your personal computer can be accessed by other users. Let’s say that your room mate has
access, and you’re making sure that there is a DataLad-101 dataset in a different place on the
file system for him to access and work with.

This is indeed a common real-world use case: Two users on a shared file system sharing a
dataset with each other. But as we can not easily simulate a second user in this handbook, for
now, you will have to share your dataset with yourself. This endeavor serves several purposes:
For one, you will experience a very easy way of sharing a dataset. Secondly, it will show you how
a dataset can be obtained from a path (instead of a URL as shown in the section Install datasets
(page 39)). Thirdly, DataLad-101 is a dataset that can showcase many different properties
of a dataset already, but it will be an additional learning experience to see how the different
parts of the dataset – text files, larger files, datalad subdataset, datalad run commands – will
appear upon installation when shared. And lastly, you will likely “share a dataset with yourself”
whenever you will be using a particular dataset of your own creation as input for one or more
projects.

“Awesome!” exclaims your room mate as you take out your Laptop to share the dataset. “You’re
really saving my ass here. I’ll make up for it when we prepare for the final”, he promises.

To install DataLad-101 into a different part of your file system, navigate out of DataLad-101,
and – for simplicity – create a new directory, mock_user, right next to it:

$ cd ../
$ mkdir mock_user

For simplicity, pretend that this is a second user’s – your room mate’s – home directory. Further-
more, let’s for now disregard anything about permissions. In a real-world example you likely
would not be able to read and write to a different user’s directories, but we will talk about
permissions later.

After creation, navigate into mock_user and install the dataset DataLad-101. To do this, use
datalad clone, and provide a path to your original dataset. Here is how it looks like:

$ cd mock_user
$ datalad clone ../DataLad-101 --description "DataLad-101 in mock_user"
[INFO] Cloning dataset to <Dataset path=/home/me/dl-101/mock_user/DataLad-101>
[INFO] Attempting to clone from ../DataLad-101 to /home/me/dl-101/mock_user/DataLad-101
[INFO] Completed clone attempts for <Dataset path=/home/me/dl-101/mock_user/DataLad-101>
install(ok): /home/me/dl-101/mock_user/DataLad-101 (dataset)

This will install your dataset DataLad-101 into your room mate’s home directory. Note that we
have given this new dataset a description about its location as well. Note further that we have
not provided the optional destination path to datalad clone, and hence it installed the dataset
under its original name in the current directory.

Together with your room mate, you go ahead and see what this dataset looks like. Before
running the command, try to predict what you will see.

9.1. Looking without touching 84

The DataLad Handbook, Release 0.12.0+519.g04985082

$ cd DataLad-101
$ tree
.

books
bash_guide.pdf -> ../.git/annex/objects/WF/Gq/MD5E-s1198170--

→˓0ab2c121bcf68d7278af266f6a399c5f.pdf/MD5E-s1198170--0ab2c121bcf68d7278af266f6a399c5f.pdf
byte-of-python.pdf -> ../.git/annex/objects/F1/Wz/MD5E-s4242644--

→˓f4e1c8ebfb5c89a69ff6d268eb2e63e3.pdf/MD5E-s4242644--f4e1c8ebfb5c89a69ff6d268eb2e63e3.pdf
progit.pdf -> ../.git/annex/objects/G6/Gj/MD5E-s12465653--

→˓05cd7ed561d108c9bcf96022bc78a92c.pdf/MD5E-s12465653--05cd7ed561d108c9bcf96022bc78a92c.
→˓pdf

TLCL.pdf -> ../.git/annex/objects/jf/3M/MD5E-s2120211--
→˓06d1efcb05bb2c55cd039dab3fb28455.pdf/MD5E-s2120211--06d1efcb05bb2c55cd039dab3fb28455.pdf

code
list_titles.sh

notes.txt
recordings

interval_logo_small.jpg -> ../.git/annex/objects/36/jF/MD5E-s100877--
→˓0fea9537f9fe255d827e4401a7d539e7.jpg/MD5E-s100877--0fea9537f9fe255d827e4401a7d539e7.jpg

longnow
podcasts.tsv
salt_logo_small.jpg -> ../.git/annex/objects/xJ/4G/MD5E-s260607--

→˓4e695af0f3e8e836fcfc55f815940059.jpg/MD5E-s260607--4e695af0f3e8e836fcfc55f815940059.jpg

4 directories, 9 files

There are a number of interesting things, and your room mate is the first to notice them:

“Hey, can you explain some things to me?”, he asks. “This directory here, “longnow”, why is it
empty?” True, the subdataset has a directory name but apart from this, the longnow directory
appears empty.

“Also, why do the PDFs in books/ and the .jpg files appear so weird? They have this cryptic
path right next to them, and look, if I try to open one of them, it fails! Did something go wrong
when we installed the dataset?” he worries. Indeed, the PDFs and pictures appear just as they
did in the original dataset on first sight: They are symlinks pointing to some location in the
object tree. To reassure your room mate that everything is fine you quickly explain to him the
concept of a symlink and the object-tree of git-annex.

“But why does the PDF not open when I try to open it?” he repeats. True, these files cannot
be opened. This mimics our experience when installing the longnow subdataset: Right after
installation, the .mp3 files also could not be opened, because their file content was not yet re-
trieved. You begin to explain to your room mate how DataLad retrieves only minimal metadata
about which files actually exist in a dataset upon a datalad clone. “It’s really handy”, you tell
him. “This way you can decide which book you want to read, and then retrieve what you need.
Everything that is annexed is retrieved on demand. Note though that the text files contents are
present, and the files can be opened – this is because these files are stored in Git. So you already
have my notes, and you can decide for yourself whether you want to get the books.”

To demonstrate this, you decide to examine the PDFs further. “Try to get one of the books”, you
instruct your room mate:

$ datalad get books/progit.pdf
get(ok): books/progit.pdf (file) [from origin...]

“Opening this file will work, because the content was retrieved from the original dataset.”, you

9.1. Looking without touching 85

The DataLad Handbook, Release 0.12.0+519.g04985082

explain, proud that this worked just as you thought it would. Your room mate is excited by this
magical command. You however begin to wonder: how does DataLad know where to look for
that original content?

This information comes from git-annex. Before getting the next PDF, let’s query git-annex where
its content is stored:

$ git annex whereis books/TLCL.pdf
whereis books/TLCL.pdf (1 copy)

283818cf-2b07-4a0e-ab28-2d5fcdb947ae -- me@muninn:~/dl-101/DataLad-101 [origin]
ok

Oh, another shasum! This time however not in a symlink. . . “That’s hard to read – what is it?”
your room mate asks. Luckily, there is a more human-readable piece of text next to it. You can
recognize a path to the dataset on your computer, prefixed with the user and hostname of your
computer. “This”, you exclaim, excited about your own realization, “is my dataset’s location I’m
sharing it from!”

Find out more

What is this location, and what if I provided a description?
Back in the very first section of the Basics, Create a dataset (page 28), a hidden section
mentioned the --description option of datalad create. With this option, you can
provide a description about the location of your dataset.
The git annex whereis command, finally, is where such a description can become handy:
If you had created the dataset with

$ datalad create --description "course on DataLad-101 on my private Laptop" -c␣
→˓text2git DataLad-101

the command would show course on DataLad-101 on my private Laptop after the
shasum – and thus a more human-readable description of where file content is stored.
This becomes especially useful when the number of repository copies increases. If you
have only one other dataset it may be easy to remember what and where it is. But
once you have one back-up of your dataset on a USB-Stick, one dataset shared with
Dropbox, and a third one on your institutions GitLab instance you will be grateful for the
descriptions you provided these locations with.
The current report of the location of the dataset is in the format user@host:path. As one
computer this book is being build on is called “muninn” and its user “me”, it could look
like this: me@muninn:~/dl-101/DataLad-101.
If the physical location of a dataset is not relevant, ambiguous, or volatile, or if it has an
annex that could move within the foreseeable lifetime of a dataset, a custom description
with the relevant information on the dataset is superior. If this is not the case, decide
for yourself whether you want to use the --description option for future datasets or
not depending on what you find more readable – a self-made location description, or an
automatic user@host:path information.

The message further informs you that there is only “(1 copy)” of this file content. This makes
sense: There is only your own, original DataLad-101 dataset in which this book is saved.

To retrieve file content of an annexed file such as one of these PDFs, git-annex will try to obtain
it from the locations it knows to contain this content. It uses the checksums to identify these
locations. Every copy of a dataset will get a unique ID with such a checksum. Note however that
just because git-annex knows a certain location where content was once it does not guarantee

9.1. Looking without touching 86

dropbox.com

The DataLad Handbook, Release 0.12.0+519.g04985082

that retrieval will work. If one location is a USB-Stick that is in your bag pack instead of your
USB port, a second location is a hard drive that you deleted all of its previous contents (including
dataset content) from, and another location is a web server, but you are not connected to the
internet, git-annex will not succeed in retrieving contents from these locations. As long as there
is at least one location that contains the file and is accessible, though, git-annex will get the
content. Therefore, for the books in your dataset, retrieving contents works because you and
your room mate share the same file system. If you’d share the dataset with anyone without
access to your file system, datalad get would not work, because it can not access your files.

But there is one book that does not suffer from this restriction: The bash_guide.pdf. This book
was not manually downloaded and saved to the dataset with wget (thus keeping DataLad in the
dark about where it came from), but it was obtained with the datalad download-url command.
This registered the books original source in the dataset, and here is why that is useful:

$ git annex whereis books/bash_guide.pdf
whereis books/bash_guide.pdf (2 copies)

00000000-0000-0000-0000-000000000001 -- web
283818cf-2b07-4a0e-ab28-2d5fcdb947ae -- me@muninn:~/dl-101/DataLad-101 [origin]

web: http://www.tldp.org/LDP/Bash-Beginners-Guide/Bash-Beginners-Guide.pdf
ok

Unlike the TLCL.pdf book, this book has two sources, and one of them is web. The second to
last line specifies the precise URL you downloaded the file from. Thus, for this book, your room
mate is always able to obtain it (as long as the URL remains valid), even if you would delete
your DataLad-101 dataset. Quite useful, this provenance, right?

Let’s now turn to the fact that the subdataset longnow contains neither file content nor file
metadata information to explore the contents of the dataset: there are no subdirectories or any
files under recordings/longnow/. This is behavior that you have not observed until now.

To fix this and obtain file availability metadata, you have to run a somewhat unexpected com-
mand:

$ datalad get -n recordings/longnow
[INFO] Cloning dataset to <Dataset path=/home/me/dl-101/mock_user/DataLad-101/recordings/
→˓longnow>
[INFO] Attempting to clone from /home/me/dl-101/DataLad-101/recordings/longnow to /home/
→˓me/dl-101/mock_user/DataLad-101/recordings/longnow
[INFO] Completed clone attempts for <Dataset path=/home/me/dl-101/mock_user/DataLad-101/
→˓recordings/longnow>
[INFO] Fetching updates for <Dataset path=/home/me/dl-101/mock_user/DataLad-101/
→˓recordings/longnow>
[INFO] Failed to enable annex remote origin-2, could be a pure git or not accessible
[WARNING] Failed to determine if origin-2 carries annex. Remote was marked by annex as␣
→˓annex-ignore. Edit .git/config to reset if you think that was done by mistake due to␣
→˓absent connection etc
install(ok): /home/me/dl-101/mock_user/DataLad-101/recordings/longnow (dataset)␣
→˓[Installed subdataset in order to get /home/me/dl-101/mock_user/DataLad-101/recordings/
→˓longnow]

The section below will elaborate on datalad get and the -n/--no-data option, but for now,
let’s first see what has changed after running the above command (excerpt):

$ tree
.

(continues on next page)

9.1. Looking without touching 87

The DataLad Handbook, Release 0.12.0+519.g04985082

(continued from previous page)

books
bash_guide.pdf -> ../.git/annex/objects/WF/Gq/MD5E-s1198170--

→˓0ab2c121bcf68d7278af266f6a399c5f.pdf/MD5E-s1198170--0ab2c121bcf68d7278af266f6a399c5f.pdf
byte-of-python.pdf -> ../.git/annex/objects/F1/Wz/MD5E-s4242644--

→˓f4e1c8ebfb5c89a69ff6d268eb2e63e3.pdf/MD5E-s4242644--f4e1c8ebfb5c89a69ff6d268eb2e63e3.pdf
progit.pdf -> ../.git/annex/objects/G6/Gj/MD5E-s12465653--

→˓05cd7ed561d108c9bcf96022bc78a92c.pdf/MD5E-s12465653--05cd7ed561d108c9bcf96022bc78a92c.
→˓pdf

TLCL.pdf -> ../.git/annex/objects/jf/3M/MD5E-s2120211--
→˓06d1efcb05bb2c55cd039dab3fb28455.pdf/MD5E-s2120211--06d1efcb05bb2c55cd039dab3fb28455.pdf

code
list_titles.sh

notes.txt
recordings

interval_logo_small.jpg -> ../.git/annex/objects/36/jF/MD5E-s100877--
→˓0fea9537f9fe255d827e4401a7d539e7.jpg/MD5E-s100877--0fea9537f9fe255d827e4401a7d539e7.jpg

longnow
Long_Now__Conversations_at_The_Interval

2017_06_09__How_Digital_Memory_Is_Shaping_Our_Future__Abby_Smith_Rumsey.
→˓mp3 -> ../.git/annex/objects/8j/kQ/MD5E-s66305442--c723d53d207e6d82dd64c3909a6a93b0.mp3/
→˓MD5E-s66305442--c723d53d207e6d82dd64c3909a6a93b0.mp3

2017_06_09__Pace_Layers_Thinking__Stewart_Brand__Paul_Saffo.mp3 -> ../.
→˓git/annex/objects/Qk/9M/MD5E-s112801659--00a42a1a617485fb2c03cbf8482c905c.mp3/MD5E-
→˓s112801659--00a42a1a617485fb2c03cbf8482c905c.mp3

2017_06_09__Proof__The_Science_of_Booze__Adam_Rogers.mp3 -> ../.git/annex/
→˓objects/FP/96/MD5E-s60091960--6e48eceb5c54d458164c2d0f47b540bc.mp3/MD5E-s60091960--
→˓6e48eceb5c54d458164c2d0f47b540bc.mp3

2017_06_09__Seveneves_at_The_Interval__Neal_Stephenson.mp3 -> ../.git/
→˓annex/objects/Wf/5Q/MD5E-s66431897--aff90c838a1c4a363bb9d83a46fa989b.mp3/MD5E-s66431897-
→˓-aff90c838a1c4a363bb9d83a46fa989b.mp3

2017_06_09__Talking_with_Robots_about_Architecture__Jeffrey_McGrew.mp3 ->␣
→˓../.git/annex/objects/Fj/9V/MD5E-s61491081--c4e88ea062c0afdbea73d295922c5759.mp3/MD5E-
→˓s61491081--c4e88ea062c0afdbea73d295922c5759.mp3

2017_06_09__The_Red_Planet_for_Real__Andy_Weir.mp3 -> ../.git/annex/
→˓objects/xq/Q3/MD5E-s136924472--0d1072105caa56475df9037670d35a06.mp3/MD5E-s136924472--
→˓0d1072105caa56475df9037670d35a06.mp3

2017_07_03__Transforming_Perception__One_Sense_at_a_Time__Kara_Platoni.
→˓mp3 -> ../.git/annex/objects/J6/88/MD5E-s62941770--77ae65e0f84c4b1fbefe74183284c305.mp3/
→˓MD5E-s62941770--77ae65e0f84c4b1fbefe74183284c305.mp3

2017_08_01__How_Climate_Will_Evolve_Government_and_Society__Kim_Stanley_
→˓Robinson.mp3 -> ../.git/annex/objects/kw/PF/MD5E-s60929439--
→˓86a30b6bab51e59af52ca8aa6684498f.mp3/MD5E-s60929439--86a30b6bab51e59af52ca8aa6684498f.
→˓mp3

2017_09_01__Envisioning_Deep_Time__Jonathon_Keats.mp3 -> ../.git/annex/
→˓objects/W4/2q/MD5E-s57113552--82a985abe7fa362e29e4ffa3a9951cc3.mp3/MD5E-s57113552--
→˓82a985abe7fa362e29e4ffa3a9951cc3.mp3

2017_10_01__Thinking_Long_term_About_the_Evolving_Global_Challenge__The_
→˓Refugee_Reality.mp3 -> ../.git/annex/objects/81/qF/MD5E-s78362767--
→˓5b077807c50d1fa02bebd399ec1431e0.mp3/MD5E-s78362767--5b077807c50d1fa02bebd399ec1431e0.
→˓mp3

2017_11_01__The_Web_In_An_Eye_Blink__Jason_Scott.mp3 -> ../.git/annex/
→˓objects/03/4v/MD5E-s64398689--049e8d1c9288d201b275331afb71b316.mp3/MD5E-s64398689--
→˓049e8d1c9288d201b275331afb71b316.mp3

2017_12_01__Ideology_in_our_Genes__The_Biological_Basis_for_Political_
→˓Traits__Rose_McDermott.mp3 -> ../.git/annex/objects/x0/2j/MD5E-s59979926--
→˓05127d163371d1152b72d98263d7848a.mp3/MD5E-s59979926--05127d163371d1152b72d98263d7848a.
→˓mp3 (continues on next page)

9.1. Looking without touching 88

The DataLad Handbook, Release 0.12.0+519.g04985082

(continued from previous page)

2017_12_07__Can_Democracy_Survive_the_Internet___Nathaniel_Persily.mp3 ->␣
→˓../.git/annex/objects/5M/Pv/MD5E-s64541470--64960bf95544bc76ed564b541ebb36bc.mp3/MD5E-
→˓s64541470--64960bf95544bc76ed564b541ebb36bc.mp3

2018_01_02__The_New_Deal_You_Don_t_Know__Louis_Hyman.mp3 -> ../.git/annex/
→˓objects/MZ/MP/MD5E-s61802477--8c3056079a4d3bfe1adbbf0195d57f3c.mp3/MD5E-s61802477--
→˓8c3056079a4d3bfe1adbbf0195d57f3c.mp3

2018_02_01__Humanity_and_the_Deep_Ocean__James_Nestor.mp3 -> ../.git/
→˓annex/objects/3G/5v/MD5E-s55707819--6bb054946ca3e3e95fd1b1792693706c.mp3/MD5E-s55707819-
→˓-6bb054946ca3e3e95fd1b1792693706c.mp3

2018_03_01__Our_Future_in_Algorithm_Farming__Mike_Kuniavsky.mp3 -> ../.
→˓git/annex/objects/GJ/J2/MD5E-s70246964--5a9f4538aa4d7bc3163067a9e7f093ca.mp3/MD5E-
→˓s70246964--5a9f4538aa4d7bc3163067a9e7f093ca.mp3

Interesting! The file metadata information is now present, and we can explore the file hierarchy.
The file content, however, is not present yet.

What has happened here?

When DataLad installs a dataset, it will by default only obtain the superdataset, and not any
subdatasets. The superdataset contains the information that a subdataset exists though – the
subdataset is registered in the superdataset. This is why the subdataset name exists as a di-
rectory. A subsequent datalad get -n path/to/longnow will install the registered subdataset
again, just as we did in the example above.

But what about the -n option for datalad get? Previously, we used datalad get to get file
content. However, get can operate on more than just the level of files or directories. Instead, it
can also operate on the level of datasets. Regardless of whether it is a single file (such as books/
TLCL.pdf) or a registered subdataset (such as recordings/longnow), get will operate on it to 1)
install it – if it is a not yet installed subdataset – and 2) retrieve the contents of any files. That
makes it very easy to get your file content, regardless of how your dataset may be structured –
it is always the same command, and DataLad blurs the boundaries between superdatasets and
subdatasets.

In the above example, we called datalad get with the option -n/--no-data. This option pre-
vents that get obtains the data of individual files or directories, thus limiting its scope to the
level of datasets as only a datalad clone is performed. Without this option, the command
would have retrieved all of the subdatasets contents right away. But with -n/--no-data, it only
installed the subdataset to retrieve the meta data about file availability.

To explicitly install all potential subdatasets recursively, that is, all of the subdatasets inside it as
well, one can give the -r/--recursive option to get:

datalad get -n -r <subds>

This would install the subds subdataset and all potential further subdatasets inside of it, and
the meta data about file hierarchies would have been available right away for every subdataset
inside of subds. If you had several subdatasets and would not provide a path to a single dataset,
but, say, the current directory (. as in datalad get -n -r .), it would clone all registered
subdatasets recursively.

So why is a recursive get not the default behavior? In Dataset nesting (page 46) we learned that
datasets can be nested arbitrarily deep. Upon getting the meta data of one dataset you might
not want to also install a few dozen levels of nested subdatasets right away.

9.1. Looking without touching 89

The DataLad Handbook, Release 0.12.0+519.g04985082

However, there is a middle way71: The --recursion-limit option let’s you specify how many
levels of subdatasets should be installed together with the first subdataset:

datalad get -n -r --recursion-limit 1 <subds>

Find out more

datalad clone versus datalad install
You may remember from section Install datasets (page 39) that DataLad has two com-
mands to obtain datasets, datalad clone and datalad install. The command structure
of install and datalad clone are almost identical:

$ datalad install [-d/--dataset PATH] [-D/--description] --source PATH/URL [DEST-
→˓PATH ...]
$ datalad clone [-d/--dataset PATH] [-D/--description] SOURCE-PATH/URL [DEST-PATH]

Both commands are also often interchangeable: To create a copy of your DataLad-101
dataset for your roommate, or to obtain the longnow subdataset in section Install datasets
(page 39) you could have used datalad install as well. From a user’s perspective, the
only difference is whether you’d need -s/--source in the command call:

$ datalad install --source ../DataLad-101
versus
$ datalad clone ../DataLad-101

On a technical layer, datalad clone is a subset (or rather: the underlying function)
of the datalad install command. Whenever you use datalad install, it will call
datalad clone underneath the hood. datalad install, however, adds to datalad clone
in that it has slightly more complex functionality. Thus, while command structure is more
intuitive, the capacities of clone are also slightly more limited than those of install
in comparison. Unlike datalad clone, datalad install provides a -r/--recursive
operation, i.e., it can obtain (clone) a dataset and potential subdatasets right at the
time of superdataset installation. You can pick for yourself which command you are
more comfortable with. In the handbook, we use clone for its more intuitive behavior,
but you will often note that we use the terms “installed dataset” and “cloned dataset”
interchangeably.

To summarize what you learned in this section, write a note on how to install a dataset using a
path as a source on a common file system.

Write this note in “your own” (the original) DataLad-101 dataset, though!

navigate back into the original dataset
$ cd ../../DataLad-101
write the note
$ cat << EOT >> notes.txt
A source to install a dataset from can also be a path,
for example as in "datalad clone ../DataLad-101".

(continues on next page)

71 Another alternative to a recursion limit to datalad get -n -r is a dataset configuration that specifies subdatasets
that should not be cloned recursively, unless explicitly given to the command with a path. With this configuration,
a superdataset’s maintainer can safeguard users and prevent potentially large amounts of subdatasets to be cloned.
The configuration is called datalad-recursiveinstall = skip and it is made on a subdataset specific basis to the
.gitmodules file of the superdataset. The chapter Tuning datasets to your needs (page 108), will talk about the details
of configurations and the .gitmodules file. Below, however, is a minimally functional example on how to apply the
configuration and how it works:

9.1. Looking without touching 90

The DataLad Handbook, Release 0.12.0+519.g04985082

create a superdataset with two subdatasets
$ datalad create superds && cd superds && datalad create -d . subds1 && datalad create -d . subds2
[INFO] Creating a new annex repo at /tmp/superds
create(ok): /tmp/superds (dataset)
[INFO] Creating a new annex repo at /tmp/superds/subds1
add(ok): subds1 (file)
add(ok): .gitmodules (file)
save(ok): . (dataset)
create(ok): subds1 (dataset)
action summary:
add (ok: 2)
create (ok: 1)
save (ok: 1)

[INFO] Creating a new annex repo at /tmp/superds/subds2
add(ok): subds2 (file)
add(ok): .gitmodules (file)
save(ok): . (dataset)
create(ok): subds2 (dataset)
action summary:
add (ok: 2)
create (ok: 1)
save (ok: 1)

create two subdatasets in subds1
$ cd subds1 && datalad create -d . subsubds1 && datalad create -d . subsubds2 && cd ../
[INFO] Creating a new annex repo at /tmp/superds/subds1/subsubds1
add(ok): subsubds1 (file)
add(ok): .gitmodules (file)
save(ok): . (dataset)
create(ok): subsubds1 (dataset)
action summary:

add (ok: 2)
create (ok: 1)
save (ok: 1)

[INFO] Creating a new annex repo at /tmp/superds/subds1/subsubds2
add(ok): subsubds2 (file)
add(ok): .gitmodules (file)
save(ok): . (dataset)
create(ok): subsubds2 (dataset)
action summary:

add (ok: 2)
create (ok: 1)
save (ok: 1)

create two subdatasets in subds2
$ cd subds2 && datalad create -d . subsubds1 && datalad create -d . subsubds2
[INFO] Creating a new annex repo at /tmp/superds/subds2/subsubds1
add(ok): subsubds1 (file)
add(ok): .gitmodules (file)
save(ok): . (dataset)
create(ok): subsubds1 (dataset)
action summary:

add (ok: 2)
create (ok: 1)
save (ok: 1)

[INFO] Creating a new annex repo at /tmp/superds/subds2/subsubds2
add(ok): subsubds2 (file)
add(ok): .gitmodules (file)
save(ok): . (dataset)
create(ok): subsubds2 (dataset)
action summary:

add (ok: 2)
create (ok: 1)
save (ok: 1)

here is the directory structure:
$ cd ../ && tree
.

subds1
subsubds1
subsubds2

subds2
subsubds1
subsubds2

save in the superdataset
datalad save -m "add a few sub and subsub datasets"
add(ok): subds1 (file)
add(ok): subds2 (file)
save(ok): . (dataset)
action summary:

add (ok: 2)
save (ok: 1)

apply the configuration to skip recursive installations for subds1
$ git config -f .gitmodules --add submodule.subds1.datalad-recursiveinstall skip

save this configuration
$ datalad save -m "prevent recursion into subds1, unless explicitly given as path"
add(ok): .gitmodules (file)
save(ok): . (dataset)
action summary:

add (ok: 1)
save (ok: 1)

clone the dataset somewhere else
$ cd ../ && datalad clone superds clone_of_superds
[INFO] Cloning superds into '/tmp/clone_of_superds'
install(ok): /tmp/clone_of_superds (dataset)

recursively get all contents (without data)
$ cd clone_of_superds && datalad get -n -r .
[INFO] Installing <Dataset path=/tmp/clone_of_superds> underneath /tmp/clone_of_superds␣
→˓recursively
[INFO] Cloning /tmp/superds/subds2 into '/tmp/clone_of_superds/subds2'
get(ok): /tmp/clone_of_superds/subds2 (dataset)
[INFO] Cloning /tmp/superds/subds2/subsubds1 into '/tmp/clone_of_superds/subds2/subsubds1'
get(ok): /tmp/clone_of_superds/subds2/subsubds1 (dataset)
[INFO] Cloning /tmp/superds/subds2/subsubds2 into '/tmp/clone_of_superds/subds2/subsubds2'
get(ok): /tmp/clone_of_superds/subds2/subsubds2 (dataset)
action summary:

get (ok: 3)

only subsubds of subds2 are installed, not of subds1:
$ tree
.

subds1
subds2

subsubds1
subsubds2

4 directories, 0 files

but if provided with an explicit path, subsubds of subds1 are cloned:
$ datalad get -n -r subds1 && tree
[INFO] Cloning /tmp/superds/subds1 into '/tmp/clone_of_superds/subds1'
install(ok): /tmp/clone_of_superds/subds1 (dataset) [Installed subdataset in order to get /tmp/
→˓clone_of_superds/subds1]
[INFO] Installing <Dataset path=/tmp/clone_of_superds> underneath /tmp/clone_of_superds/subds1␣
→˓recursively
.

subds1
subsubds1
subsubds2

subds2
subsubds1
subsubds2

6 directories, 0 files

9.1. Looking without touching 91

The DataLad Handbook, Release 0.12.0+519.g04985082

(continued from previous page)

Just as in creating datasets, you can add a
description on the location of the new dataset clone
with the -D/--description option.

Note that subdatasets will not be installed by default,
but are only registered in the superdataset -- you will
have to do a "datalad get -n PATH/TO/SUBDATASET"
to install the subdataset for file availability meta data.
The -n/--no-data options prevents that file contents are
also downloaded.

Note that a recursive "datalad get" would install all further
registered subdatasets underneath a subdataset, so a safer
way to proceed is to set a decent --recursion-limit:
"datalad get -n -r --recursion-limit 2 <subds>"

EOT

Save this note.

$ datalad save -m "add note about cloning from paths and recursive datalad get"
add(ok): notes.txt (file)
save(ok): . (dataset)
action summary:
add (ok: 1)
save (ok: 1)

Note for Git users

A dataset that is installed from an existing source, e.g., a path or URL, is the DataLad
equivalent of a clone in Git.

9.2 Where’s Waldo?

So far, you and your room mate have created a copy of the DataLad-101 dataset on the same
file system but a different place by installing it from a path.

You have observed that the -r/--recursive option needs to be given to datalad get [-n/
--no-data] in order to install further potential subdatasets in one go. Only then is the sub-
datasets file content availability metadata present to explore the file hierarchy available within
the subdataset. Alternatively, a datalad get -n <subds> takes care of installing exactly the
specified registered subdataset.

And you have mesmerized your room mate by showing him how git-annex retrieved large file
contents from the original dataset.

Let’s now see the git annex whereis command in more detail, and find out how git-annex
knows where file content can be obtained from. Within the original DataLad-101 dataset, you
retrieved some of the .mp3 files via datalad get, but not others. How will this influence the
output of git annex whereis, you wonder?

9.2. Where’s Waldo? 92

The DataLad Handbook, Release 0.12.0+519.g04985082

Together with your room mate, you decide to find out. You navigate back into the installed
dataset, and run git annex whereis on a file that you once retrieved file content for, and on a
file that you did not yet retrieve file content for. Here is the output for the retrieved file:

navigate back into the clone of DataLad-101
$ cd ../mock_user/DataLad-101
navigate into the subdirectory
$ cd recordings/longnow
file content exists in original DataLad-101 for this file
$ git annex whereis Long_Now__Seminars_About_Long_term_Thinking/2003_11_15__Brian_Eno__
→˓The_Long_Now.mp3
whereis Long_Now__Seminars_About_Long_term_Thinking/2003_11_15__Brian_Eno__The_Long_Now.
→˓mp3 (3 copies)

00000000-0000-0000-0000-000000000001 -- web
4804d934-ff46-4834-939b-fc60ef612113 -- me@muninn:~/dl-101/DataLad-101/recordings/

→˓longnow [origin]
da3bf937-5bd2-43ea-a07b-bcbe71f3b875 -- mih@medusa:/tmp/seminars-on-longterm-

→˓thinking

web: http://podcast.longnow.org/salt/redirect/salt-020031114-eno-podcast.mp3
ok

And here is the output for a file that you did not yet retrieve content for in your original
DataLad-101 dataset.

but not for this:
$ git annex whereis Long_Now__Seminars_About_Long_term_Thinking/2005_01_15__James_Carse__
→˓Religious_War_In_Light_of_the_Infinite_Game.mp3
whereis Long_Now__Seminars_About_Long_term_Thinking/2005_01_15__James_Carse__Religious_
→˓War_In_Light_of_the_Infinite_Game.mp3 (2 copies)

00000000-0000-0000-0000-000000000001 -- web
da3bf937-5bd2-43ea-a07b-bcbe71f3b875 -- mih@medusa:/tmp/seminars-on-longterm-

→˓thinking

web: http://podcast.longnow.org/salt/redirect/salt-020050114-carse-podcast.mp3
ok

As you can see, the file content previously downloaded with a datalad get has a third source,
your original dataset on your computer. The file we did not yet retrieve in the original dataset
only has only two sources.

Let’s see how this affects a datalad get:

get the first file
$ datalad get Long_Now__Seminars_About_Long_term_Thinking/2003_11_15__Brian_Eno__The_Long_
→˓Now.mp3
get(ok): Long_Now__Seminars_About_Long_term_Thinking/2003_11_15__Brian_Eno__The_Long_Now.
→˓mp3 (file) [from origin...]

get the second file
$ datalad get Long_Now__Seminars_About_Long_term_Thinking/2005_01_15__James_Carse__
→˓Religious_War_In_Light_of_the_Infinite_Game.mp3
get(ok): Long_Now__Seminars_About_Long_term_Thinking/2005_01_15__James_Carse__Religious_
→˓War_In_Light_of_the_Infinite_Game.mp3 (file) [from web...]

The most important thing to note is: It worked in both cases, regardless of whether the original
DataLad-101 dataset contained the file content or not.

9.2. Where’s Waldo? 93

The DataLad Handbook, Release 0.12.0+519.g04985082

We can see that git-annex used two different sources to retrieve the content from, though, if
we look at the very end of the get summary. The first file was retrieved “from origin...”.
Origin is Git terminology for “from where the dataset was copied from” – origin therefore is
the original DataLad-101 dataset.

The second file was retrieved “from web...”, and thus from a different source. This source is
called web because it actually is a URL through which this particular podcast-episode is made
available in the first place. You might also have noticed that the download from web took longer
than the retrieval from the directory on the same file system. But we will get into the details of
this type of content source once we cover the importfeed and add-url functions72.

Let’s for now add a note on the git annex whereis command. Again, do this in the original
DataLad-101 directory, and do not forget to save it.

navigate back:
$ cd ../../../../DataLad-101

write the note
$ cat << EOT >> notes.txt
The command "git annex whereis PATH" lists the repositories that have
the file content of an annexed file. When using "datalad get" to retrieve
file content, those repositories will be queried.

EOT

$ datalad status
modified: notes.txt (file)

$ datalad save -m "add note on git annex whereis"
add(ok): notes.txt (file)
save(ok): . (dataset)
action summary:
add (ok: 1)
save (ok: 1)

9.3 Retrace and reenact

“Thanks a lot for sharing your dataset with me! This is super helpful. I’m sure I’ll catch up in
no time!”, your room mate says confidently. “How far did you get with the DataLad commands
yet?” he asks at last.

“Mhh, I think the last big one was datalad run. Actually, let me quickly show you what this
command does. There is something that I’ve been wanting to try anyway.” you say.

The dataset you shared contained a number of datalad run commands. For example, you
created the simple podcasts.tsv file that listed all titles and speaker names of the longnow
podcasts.

Given that you learned to create “proper” datalad run commands, complete with --input and
--output specification, anyone should be able to datalad rerun these commits easily. This is
what you want to try now.

72 Maybe you wonder what the location mih@medusa is. It is a copy of the data on an account belonging to user
mih on the host name medusa. Because we do not have the host names’ address, nor log-in credentials for this user,
we can not retrieve content from this location. However, somebody else (for example the user mih) could.

9.3. Retrace and reenact 94

The DataLad Handbook, Release 0.12.0+519.g04985082

You begin to think about which datalad run commit would be the most useful one to take a
look at. The creation of podcasts.tsv was a bit dull – at this point in time, you didn’t yet know
about --input and --output arguments, and the resulting output is present anyway because
text files like this .tsv file are stored in Git. However, one of the attempts to resize a picture
could be useful. The input, the podcast logos, is not yet retrieved, nor is the resulting, resized
image. “Let’s go for this!”, you say, and drag your confused room mate to the computer screen.

First of all, find the commit shasum of the command you want to run by taking a look into the
history of the dataset (in the shared dataset):

navigate into the shared copy
$ cd ../mock_user/DataLad-101

lets view the history
$ git log --oneline
a1f2c3f add note on clean datasets
baf4fc5 [DATALAD RUNCMD] Resize logo for slides
a84115d [DATALAD RUNCMD] Resize logo for slides
66b01ae add additional notes on run options
3219d48 [DATALAD RUNCMD] convert -resize 450x450 recordings/longn...
8ffbc4a resized picture by hand
e8e2e95 [DATALAD RUNCMD] convert -resize 400x400 recordings/longn...
523a6b1 add note on basic datalad run and datalad rerun
c3623d0 add note datalad and git diff
c317c6f [DATALAD RUNCMD] create a list of podcast titles
2dd044a BF: list both directories content
4bf7418 [DATALAD RUNCMD] create a list of podcast titles
42387da Add short script to write a list of podcast speakers and titles
72f6a7d Add note on datalad clone
9bb3629 [DATALAD] Recorded changes
12ced25 add note on datalad save
63d50c8 Add notes on datalad create
8d3b831 add beginners guide on bash
393f24f add reference book about git
44aa3e2 add books on Python and Unix to read later
c74e2b7 Instruct annex to add text files to Git
dbaf9fa [DATALAD] new dataset

Ah, there it is, the second most recent commit. Just as already done in section DataLad, Re-Run!
(page 56), take this shasum and plug it into a datalad rerun command:

$ datalad rerun baf4fc53bc1e2f68ab8d36ca56aa9b86f9b37482
[INFO] Making sure inputs are available (this may take some time)
[WARNING] no content present; cannot unlock [unlock(/home/me/dl-101/mock_user/DataLad-101/
→˓recordings/salt_logo_small.jpg)]
[INFO] == Command start (output follows) =====
[INFO] == Command exit (modification check follows) =====
get(ok): recordings/longnow/.datalad/feed_metadata/logo_salt.jpg (file) [from origin...]
remove(ok): recordings/salt_logo_small.jpg
add(ok): recordings/salt_logo_small.jpg (file)
action summary:
add (ok: 1)
get (notneeded: 1, ok: 1)
remove (ok: 1)
save (notneeded: 2)

“This was so easy!” you exclaim. DataLad retrieved the missing file content from the subdataset

9.3. Retrace and reenact 95

The DataLad Handbook, Release 0.12.0+519.g04985082

and it tried to unlock the output prior to the command execution. Note that because you did
not retrieve the output, recordings/salt_logo_small.jpg, yet, the missing content could not
be unlocked. DataLad warns you about this, but proceeds successfully.

Your room mate now not only knows how exactly the resized file came into existence, but he
can also reproduce your exact steps to create it. “This is as reproducible as it can be!” you think
in awe.

9.4 Stay up to date

All of what you have seen about sharing dataset was really cool, and for the most part also
surprisingly intuitive. datalad run commands or file retrieval worked exactly as you imagined
it to work, and you begin to think that slowly but steadily you’re getting a feel about how
DataLad really works.

But to be honest, so far, sharing the dataset with DataLad was also remarkably unexciting
given that you already knew most of the dataset magic that your room mate currently is still
mesmerized about. To be honest, you’re not yet certain whether sharing data with DataLad
really improves your life up until this point. After all, you could have just copied your directory
into your mock_user directory and this would have resulted in about the same output, right?

What we will be looking into now is how shared DataLad datasets can be updated.

Remember that you added some notes on datalad clone, datalad get, and git annex whereis
into the original DataLad-101?

This is a change that is not reflected in your “shared” installation in ../mock_user/DataLad-101:

we are inside the installed copy
$ cat notes.txt
One can create a new dataset with 'datalad create [--description] PATH'.
The dataset is created empty

The command "datalad save [-m] PATH" saves the file
(modifications) to history. Note to self:
Always use informative, concise commit messages.

The command 'datalad clone URL/PATH [PATH]'
installs a dataset from e.g., a URL or a path.
If you install a dataset into an existing
dataset (as a subdataset), remember to specify the
root of the superdataset with the '-d' option.

There are two useful functions to display changes between two
states of a dataset: "datalad diff -f/--from COMMIT -t/--to COMMIT"
and "git diff COMMIT COMMIT", where COMMIT is a shasum of a commit
in the history.

The datalad run command can record the impact a script or command has on a Dataset.
In its simplest form, datalad run only takes a commit message and the command that
should be executed.

Any datalad run command can be re-executed by using its commit shasum as an argument
in datalad rerun CHECKSUM. DataLad will take information from the run record of the␣
→˓original

(continues on next page)

9.4. Stay up to date 96

The DataLad Handbook, Release 0.12.0+519.g04985082

(continued from previous page)

commit, and re-execute it. If no changes happen with a rerun, the command will not be␣
→˓written
to history. Note: you can also rerun a datalad rerun command!

You should specify all files that a command takes as input with an -i/--input flag. These
files will be retrieved prior to the command execution. Any content that is modified or
produced by the command should be specified with an -o/--output flag. Upon a run or rerun
of the command, the contents of these files will get unlocked so that they can be␣
→˓modified.

Important! If the dataset is not "clean" (a datalad status output is empty),
datalad run will not work - you will have to save modifications present in your
dataset.
A suboptimal alternative is the --explicit flag,
used to record only those changes done
to the files listed with --output flags.

But the original intention of sharing the dataset with your room mate was to give him access
to your notes. How does he get the notes that you have added in the last two sections, for
example?

This installed copy of DataLad-101 knows its origin, i.e., the place it was installed from. Using
this information, it can query the original dataset whether any changes happened since the last
time it checked, and if so, retrieve and integrate them.

This is done with the datalad update --merge command (datalad-update manual).

$ datalad update --merge
[INFO] Fetching updates for <Dataset path=/home/me/dl-101/mock_user/DataLad-101>
[INFO] Applying updates to <Dataset path=/home/me/dl-101/mock_user/DataLad-101>
update(ok): . (dataset)

Importantly, run this command either within the specific (sub)dataset you are interested in, or
provide a path to the root of the dataset you are interested in with the -d/--dataset flag. If
you would run the command within the longnow subdataset, you would query this subdatasets’
origin for updates, not the original DataLad-101 dataset.

Let’s check the contents in notes.txt to see whether the previously missing changes are now
present:

$ cat notes.txt
One can create a new dataset with 'datalad create [--description] PATH'.
The dataset is created empty

The command "datalad save [-m] PATH" saves the file
(modifications) to history. Note to self:
Always use informative, concise commit messages.

The command 'datalad clone URL/PATH [PATH]'
installs a dataset from e.g., a URL or a path.
If you install a dataset into an existing
dataset (as a subdataset), remember to specify the
root of the superdataset with the '-d' option.

(continues on next page)

9.4. Stay up to date 97

The DataLad Handbook, Release 0.12.0+519.g04985082

(continued from previous page)

There are two useful functions to display changes between two
states of a dataset: "datalad diff -f/--from COMMIT -t/--to COMMIT"
and "git diff COMMIT COMMIT", where COMMIT is a shasum of a commit
in the history.

The datalad run command can record the impact a script or command has on a Dataset.
In its simplest form, datalad run only takes a commit message and the command that
should be executed.

Any datalad run command can be re-executed by using its commit shasum as an argument
in datalad rerun CHECKSUM. DataLad will take information from the run record of the␣
→˓original
commit, and re-execute it. If no changes happen with a rerun, the command will not be␣
→˓written
to history. Note: you can also rerun a datalad rerun command!

You should specify all files that a command takes as input with an -i/--input flag. These
files will be retrieved prior to the command execution. Any content that is modified or
produced by the command should be specified with an -o/--output flag. Upon a run or rerun
of the command, the contents of these files will get unlocked so that they can be␣
→˓modified.

Important! If the dataset is not "clean" (a datalad status output is empty),
datalad run will not work - you will have to save modifications present in your
dataset.
A suboptimal alternative is the --explicit flag,
used to record only those changes done
to the files listed with --output flags.

A source to install a dataset from can also be a path,
for example as in "datalad clone ../DataLad-101".

Just as in creating datasets, you can add a
description on the location of the new dataset clone
with the -D/--description option.

Note that subdatasets will not be installed by default,
but are only registered in the superdataset -- you will
have to do a "datalad get -n PATH/TO/SUBDATASET"
to install the subdataset for file availability meta data.
The -n/--no-data options prevents that file contents are
also downloaded.

Note that a recursive "datalad get" would install all further
registered subdatasets underneath a subdataset, so a safer
way to proceed is to set a decent --recursion-limit:
"datalad get -n -r --recursion-limit 2 <subds>"

The command "git annex whereis PATH" lists the repositories that have
the file content of an annexed file. When using "datalad get" to retrieve
file content, those repositories will be queried.

Wohoo, the contents are here!

Therefore, sharing DataLad datasets by installing them enables you to update the datasets con-
tent should the original datasets’ content change – in only a single command. How cool is

9.4. Stay up to date 98

The DataLad Handbook, Release 0.12.0+519.g04985082

that?!

Conclude this section by adding a note about updating a dataset to your own DataLad-101
dataset:

navigate back:
$ cd ../../DataLad-101

write the note
$ cat << EOT >> notes.txt
To update a shared dataset, run the command "datalad update --merge".
This command will query its origin for changes, and integrate the
changes into the dataset.

EOT

save the changes

$ datalad save -m "add note about datalad update"
add(ok): notes.txt (file)
save(ok): . (dataset)
action summary:
add (ok: 1)
save (ok: 1)

PS: You might wonder whether there is also a sole datalad update command. Yes, there is – if
you are a Git-user and know about branches and merging you can read the Note for Git-users
below. However, a thorough explanation and demonstration will be in the next section.

Note for Git users

datalad update is the DataLad equivalent of a git fetch, datalad update --merge
is the DataLad equivalent of a git pull. Upon a simple datalad update, the remote
information is available on a branch separate from the master branch – in most cases this
will be remotes/origin/master. You can git checkout this branch or run git diff to
explore the changes and identify potential merge conflicts.

9.5 Networking

To get a hang on the basics of sharing a dataset, you shared your DataLad-101 dataset with your
room mate on a common, local file system. Your lucky room mate now has your notes and can
thus try to catch up to still pass the course. Moreover, though, he can also integrate all other
notes or changes you make to your dataset, and stay up to date. This is because a DataLad
dataset makes updating shared data a matter of a single datalad update --merge command.

But why does this need to be a one-way line? “I want to provide helpful information for you
as well!”, says your room mate. “How could you get any insightful notes that I make in my
dataset, or maybe the results of our upcoming mid-term project? Its a bit unfair that I can get
your work, but you can not get mine.”

Consider, for example, that your room mate might have googled about DataLad a bit. On the
datalad homepage73 he might have found very useful additional information, such as the ascii-

73 https://www.datalad.org/

9.5. Networking 99

https://www.datalad.org/

The DataLad Handbook, Release 0.12.0+519.g04985082

cast on dataset nesting74. Because he found this very helpful in understanding dataset nesting
concepts, he decided to download the shell script that was used to generate this example75

from GitHub, and saved it in the code/ directory.

He does it using the datalad command datalad download-url that you experienced in section
Create a dataset (page 28) already: This command will download a file just as wget, but it can
also take a commit message and will save the download right to the history of the dataset that
you specify, while recording its origin as provenance information.

Navigate into your dataset copy in mock_user/DataLad-101, and run the following command

navigate into the installed copy
$ cd ../mock_user/DataLad-101

download the shell script and save it in your code/ directory
$ datalad download-url \
-d . \
-m "Include nesting demo from datalad website" \
-O code/nested_repos.sh \
https://raw.githubusercontent.com/datalad/datalad.org/

→˓7e8e39b1f08d0a54ab521586f27ee918b4441d69/content/asciicast/seamless_nested_repos.sh
[INFO] Downloading 'https://raw.githubusercontent.com/datalad/datalad.org/
→˓7e8e39b1f08d0a54ab521586f27ee918b4441d69/content/asciicast/seamless_nested_repos.sh'␣
→˓into '/home/me/dl-101/mock_user/DataLad-101/code/nested_repos.sh'
download_url(ok): /home/me/dl-101/mock_user/DataLad-101/code/nested_repos.sh (file)
add(ok): code/nested_repos.sh (file)
save(ok): . (dataset)
action summary:
add (ok: 1)
download_url (ok: 1)
save (ok: 1)

Run a quick datalad status:

$ datalad status
nothing to save, working tree clean

Nice, the datalad download-url command saved this download right into the history, and
datalad status does not report unsaved modifications! We’ll show an excerpt of the last commit
here:

$ git log -n 1 -p
commit 1639278d92c19c44350c63d5b1d2524299fee123
Author: Elena Piscopia <elena@example.net>
Date: Mon Feb 17 08:50:41 2020 +0100

Include nesting demo from datalad website

diff --git a/code/nested_repos.sh b/code/nested_repos.sh
new file mode 100644
index 0000000..f84c817
--- /dev/null
+++ b/code/nested_repos.sh

(continues on next page)

74 https://www.datalad.org/for/git-users
75 https://raw.githubusercontent.com/datalad/datalad.org/7e8e39b1f08d0a54ab521586f27ee918b4441d69/

content/asciicast/seamless_nested_repos.sh

9.5. Networking 100

https://www.datalad.org/for/git-users
https://raw.githubusercontent.com/datalad/datalad.org/7e8e39b1f08d0a54ab521586f27ee918b4441d69/content/asciicast/seamless_nested_repos.sh

The DataLad Handbook, Release 0.12.0+519.g04985082

(continued from previous page)

@@ -0,0 +1,59 @@
+#!/bin/bash
+# This script was converted using cast2script from:
+# docs/casts/seamless_nested_repos.sh
+set -e -u
+export GIT_PAGER=cat
+
+# DataLad provides seamless management of nested Git repositories...
+
+# Let's create a dataset
+datalad create demo
+cd demo
+
+# A DataLad dataset is just a Git repo with some initial configuration
+git log --oneline
+
+# We can generate nested datasets, by telling DataLad to register a
+# new dataset in a parent dataset

Suddenly, your room mate has a file change that you do not have. His dataset evolved.

So how do we link back from the copy of the dataset to its origin, such that your room mate’s
changes can be included in your dataset? How do we let the original dataset “know” about this
copy your room mate has? Do we need to install the installed dataset of our room mate as a
copy again?

No, luckily, it’s simpler and less convoluted. What we have to do is to register a datalad sibling:
A reference to our room mate’s dataset in our own, original dataset.

Note for Git users

Git repositories can configure clones of a dataset as remotes in order to fetch, pull, or push
from and to them. A datalad sibling is the equivalent of a git clone that is configured
as a remote.

Let’s see how this is done.

First of all, navigate back into the original dataset. In the original dataset, “add” a “sibling”
by using the datalad siblings command (datalad-siblings manual). The command takes
the base command, datalad siblings, an action, in this case add, a path to the root of the
dataset -d ., a name for the sibling, -s/--name roommate, and a URL or path to the sibling,
--url ../mock_user/DataLad-101. This registers your room mate’s DataLad-101 as a “sibling”
(we will call it “roommate”) to your own DataLad-101 dataset.

$ cd ../../DataLad-101
add a sibling
$ datalad siblings add -d . --name roommate --url ../mock_user/DataLad-101
.: roommate(+) [../mock_user/DataLad-101 (git)]

There are a few confusing parts about this command: For one, do not be surprised about the
--url argument – it’s called “URL” but it can be a path as well. Also, do not forget to give a
name to your dataset’s sibling. Without the -s/ --name argument the command will fail. The
reason behind this is that the default name of a sibling if no name is given will be the host name
of the specified URL, but as you provide a path and not a URL, there is no host name to take as
a default.

9.5. Networking 101

The DataLad Handbook, Release 0.12.0+519.g04985082

As you can see in the command output, the addition of a sibling succeeded: roommate(+)[.
./mock_user/DataLad-101] means that your room mate’s dataset is now known to your own
dataset as “roommate”

$ datalad siblings
.: here(+) [git]
.: roommate(+) [../mock_user/DataLad-101 (git)]

This command will list all known siblings of the dataset. You can see it in the resulting list with
the name “roommate” you have given to it.

Find out more

What if I mistyped the name or want to remove the sibling?
You can remove a sibling using datalad siblings remove -s roommate

The fact that the DataLad-101 dataset now has a sibling means that we can also datalad update
this repository. Awesome!

Your room mate previously ran a datalad update --merge in the section Stay up to date
(page 96). This got him changes he knew you made into a dataset that he so far did not change.
This meant that nothing unexpected would happen with the datalad update --merge.

But consider the current case: Your room mate made changes to his dataset, but you do not
necessarily know which. You also made changes to your dataset in the meantime, and added a
note on datalad update. How would you know that his changes and your changes are not in
conflict with each other?

This scenario is where a plain datalad update becomes useful. If you run a plain datalad
update, DataLad will query the sibling for changes, and store those changes in a safe place in
your own dataset, but it will not yet integrate them into your dataset. This gives you a chance to
see whether you actually want to have the changes your room mate made.

Let’s see how it’s done. First, run a plain datalad update without the --merge option.

$ datalad update -s roommate
[INFO] Fetching updates for <Dataset path=/home/me/dl-101/DataLad-101>
update(ok): . (dataset)

Note that we supplied the sibling’s name with the -s/--name option. This is good practice, and
allows you to be precise in where you want to get updates from. It would have worked without
the specification (just as a bare datalad update --merge worked for your room mate), because
there is only one other known location, though.

This plain datalad update informs you that it “fetched” updates from the dataset. The changes
however, are not yet visible – the script that he added is not yet in your code/ directory:

$ ls code/
list_titles.sh

So where is the file? It is in a different branch of your dataset.

If you do not use Git, the concept of a branch can be a big source of confusion. There will
be sections later in this book that will elaborate a bit more what branches are, and how to
work with them, but for now envision a branch just like a bunch of drawers on your desk. The
paperwork that you have in front of you right on your desk is your dataset as you currently see

9.5. Networking 102

The DataLad Handbook, Release 0.12.0+519.g04985082

it. These drawers instead hold documents that you are in principle working on, just not now –
maybe different versions of paperwork you currently have in front of you, or maybe other files
than the ones currently in front of you on your desk.

Imagine that a datalad update created a small drawer, placed all of the changed or added files
from the sibling inside, and put it on your desk. You can now take a look into that drawer to
see whether you want to have the changes right in front of you.

The drawer is a branch, and it is usually called remotes/origin/master. To look inside of it you
can git checkout BRANCHNAME, or you can do a diff between the branch (your drawer) and the
dataset as it is currently in front of you (your desk). We will do the latter, and leave the former
for a different lecture:

$ datalad diff --to remotes/roommate/master
added: code/nested_repos.sh (file)

modified: notes.txt (file)

This shows us that there is an additional file, and it also shows us that there is a difference in
notes.txt! Let’s ask git diff to show us what the differences in detail:

$ git diff remotes/roommate/master
diff --git a/code/nested_repos.sh b/code/nested_repos.sh
deleted file mode 100644
index f84c817..0000000
--- a/code/nested_repos.sh
+++ /dev/null
@@ -1,59 +0,0 @@
-#!/bin/bash
-# This script was converted using cast2script from:
-# docs/casts/seamless_nested_repos.sh
-set -e -u
-export GIT_PAGER=cat
-
-# DataLad provides seamless management of nested Git repositories...
-
-# Let's create a dataset
-datalad create demo
-cd demo
-
-# A DataLad dataset is just a Git repo with some initial configuration
-git log --oneline
-
-# We can generate nested datasets, by telling DataLad to register a
-# new dataset in a parent dataset
-datalad create -d . sub1
-
-# A subdataset is nothing more than regular Git submodule
-git submodule
-
-# Of course subdatasets can be nested
-datalad create -d . sub1/justadir/sub2
-
-# Unlike Git, DataLad automatically takes care of committing all
-# changes associated with the added subdataset up to the given
-# parent dataset
-git status
-

(continues on next page)

9.5. Networking 103

The DataLad Handbook, Release 0.12.0+519.g04985082

(continued from previous page)

-# Let's create some content in the deepest subdataset
-mkdir sub1/justadir/sub2/anotherdir
-touch sub1/justadir/sub2/anotherdir/afile
-
-# Git can only tell us that something underneath the top-most
-# subdataset was modified
-git status
-
-# DataLad saves us from further investigation
-datalad diff -r
-
-# Like Git, it can report individual untracked files, but also across
-# repository boundaries
-datalad diff -r --report-untracked all
-
-# Adding this new content with Git or git-annex would be an exercise
-git add sub1/justadir/sub2/anotherdir/afile || true
-
-# DataLad does not require users to determine the correct repository
-# in the tree
-datalad add -d . sub1/justadir/sub2/anotherdir/afile
-
-# Again, all associated changes in the entire dataset tree, up to
-# the given parent dataset, were committed
-git status
-
-# DataLad's 'diff' is able to report the changes from these related
-# commits throughout the repository tree
-datalad diff --revision @~1 -r
diff --git a/notes.txt b/notes.txt
index 7d3dc4c..0483229 100644
--- a/notes.txt
+++ b/notes.txt
@@ -60,3 +60,7 @@ The command "git annex whereis PATH" lists the repositories that have
the file content of an annexed file. When using "datalad get" to retrieve
file content, those repositories will be queried.

+To update a shared dataset, run the command "datalad update --merge".
+This command will query its origin for changes, and integrate the
+changes into the dataset.
+

Let’s digress into what is shown here. We are comparing the current state of your dataset against
the current state of your room mate’s dataset. Everything marked with a - is a change that your
room mate has, but not you: This is the script that he downloaded!

Everything that is marked with a + is a change that you have, but not your room mate: It is the
additional note on datalad update you made in your own dataset in the previous section.

Cool! So now that you know what the changes are that your room mate made, you can safely
datalad update --merge them to integrate them into your dataset. In technical terms you will
“merge the branch remotes/roommate/master into master”. But the details of this will be stated
in a standalone section later.

Note that the fact that your room mate does not have the note on datalad update does not
influence your note. It will not get deleted by the merge. You do not set your dataset to the

9.5. Networking 104

The DataLad Handbook, Release 0.12.0+519.g04985082

state of your room mate’s dataset, but you incorporate all changes he made – which is only the
addition of the script.

$ datalad update --merge -s roommate
[INFO] Fetching updates for <Dataset path=/home/me/dl-101/DataLad-101>
[INFO] Applying updates to <Dataset path=/home/me/dl-101/DataLad-101>
update(ok): . (dataset)

The exciting question is now whether your room mate’s change is now also part of your own
dataset. Let’s list the contents of the code/ directory and also peek into the history:

$ ls code/
list_titles.sh
nested_repos.sh

$ git log --oneline
7462696 Merge remote-tracking branch 'refs/remotes/roommate/master'
1639278 Include nesting demo from datalad website
0ef8c62 add note about datalad update
e5df2d8 add note on git annex whereis
80c31dc add note about cloning from paths and recursive datalad get

Wohoo! Here it is: The script now also exists in your own dataset. You can see the commit that
your room mate made when he saved the script, and you can also see a commit that records
how you merged your room mate’s dataset changes into your own dataset. The commit message
of this latter commit for now might contain many words yet unknown to you if you do not use
Git, but a later section will get into the details of what the meaning of “merge”, “branch”, “refs”
or “master” is.

For now, you’re happy to have the changes your room mate made available. This is how it
should be! You helped him, and he helps you. Awesome! There actually is a wonderful word
for it: Collaboration. Thus, without noticing, you have successfully collaborated for the first
time using DataLad datasets.

Create a note about this, and save it.

$ cat << EOT >> notes.txt
To update from a dataset with a shared history, you
need to add this dataset as a sibling to your dataset.
"Adding a sibling" means providing DataLad with info about
the location of a dataset, and a name for it. Afterwards,
a "datalad update --merge -s name" will integrate the changes
made to the sibling into the dataset.
A safe step in between is to do a "datalad update -s name"
and checkout the changes with "git/datalad diff"
to remotes/origin/master

EOT
$ datalad save -m "Add note on adding siblings"
add(ok): notes.txt (file)
save(ok): . (dataset)
action summary:
add (ok: 1)
save (ok: 1)

9.5. Networking 105

The DataLad Handbook, Release 0.12.0+519.g04985082

9.6 Summary

Together with your room mate you have just discovered how to share, update, and collaborate
on a DataLad dataset on a shared file system. Thus, you have glimpsed into the principles and
advantages of sharing a dataset with a simple example.

• To obtain a dataset, one can also use datalad clone with a path. Potential subdatasets
will not be installed right away. As they are registered in the superdataset, you can do
datalad get -n/--no-data, or specify the -r/--recursive (datalad get -n -r <subds>)
with a decent -R/--recursion-limit choice to install them afterwards.

• The configuration of the original dataset determines which types of files will have their
content available right after the installation of the dataset, and which types of files need
to be retrieved via datalad get: Any file content stored in Git will be available right
away, while all file content that is annexed only has small metadata about its availability
attached to it. The original DataLad-101 dataset used the text2git configuration template
to store text files such as notes.txt and code/list_titles.sh in Git – these files’ content
is therefore available right after installation.

• Annexed content can be retrieved via datalad get from the file content sources.

• git annex whereis PATH will list all locations known to contain file content for a particular
file. This location is where git-annex will attempt to retrieve file content from, and it is
described with the --description provided during a datalad create. It is a very helpful
command to find out where file content resides, and how many locations with copies exist.

• A shared copy of a dataset includes the datasets history. If well made, datalad run
commands can then easily be rerun.

• Because an installed dataset knows its origin – the place it was originally installed from –
it can be kept up-to-date with the datalad update command. This command will query
the origin of the dataset for updates, and a datalad update --merge will integrate these
changes into the dataset copy.

• Thus, using DataLad, data can be easily shared and kept up to date with only two com-
mands: datalad clone and datalad update.

• By configuring a dataset as a sibling, collaboration becomes easy.

• To avoid integrating conflicting modifications of a sibling dataset into your own dataset, a
datalad update -s SIBLINGNAME will “fetch” modifications and store them on a different
branch of your dataset. The commands datalad diff and git diff can subsequently help
to find out what changes have been made in the sibling.

Now what I can do with that?

Most importantly, you have experienced the first way of sharing and updating a dataset. The ex-
ample here may strike you as too simplistic, but in later parts of the book you will see examples
in which datasets are shared on the same file system in surprisingly useful ways.

Simultaneously, you have observed dataset properties you already knew (for example how an-
nexed files need to be retrieved via datalad get), but you have also seen novel aspects of
a dataset – for example that subdatasets are not automatically installed by default, how git
annex whereis can help you find out where file content might be stored, how useful commands
that capture provenance about the origin or creation of files (such as datalad run or datalad

9.6. Summary 106

The DataLad Handbook, Release 0.12.0+519.g04985082

download-url) are, or how a shared dataset can be updated to reflect changes that were made
to the original dataset.

Also, you have successfully demonstrated a large number of DataLad dataset principles to your
room mate: How content stored in Git is present right away and how annexed content first
needs to be retrieved, how easy a datalad rerun is if the original datalad run command was
well specified, how a datasets history is shared and not only its data.

Lastly, with the configuration of a sibling, you have experienced one way to collaborate in a
dataset, and with datalad update --merge and datalad update, you also glimpsed into more
advances aspects of Git, namely the concept of a branch.

Therefore, these last few sections have hopefully been a good review of what you already knew,
but also a big knowledge gain, and cause joyful anticipation of collaboration in a real-world
setting of one of your own use cases.

9.6. Summary 107

CHAPTER

TEN

TUNING DATASETS TO YOUR NEEDS

10.1 DIY configurations

Back in section Data safety (page 75), you already learned that there are dataset configurations,
and that these configurations can be modified, for example with the -c text2git option. This
option applies a configuration template to store text files in Git instead of git-annex, and thereby
modifies the DataLad dataset’s default configuration to store every file in git-annex.

The lecture today focuses entirely on the topic of configurations, and aims to equip everyone
with the basics to configure their general and dataset specific setup to their needs. This is not
only a handy way to tune a dataset to one’s wishes, but also helpful to understand potential
differences in command execution and file handling between two users, computers, or datasets.

108

The DataLad Handbook, Release 0.12.0+519.g04985082

“First of all, when we talk about configurations, we have to differentiate between different
scopes of configuration, and different tools the configuration belongs or applies to”, our lec-
turer starts. “In DataLad datasets, different tools can have a configuration: Git, git-annex, and
DataLad itself. Because these tools are all combined by DataLad to help you manage your data,
it is important to understand how the configuration of one software is used by or influences a
second tool, or the overall dataset performance.”

“Oh crap, one of these theoretical lectures again” mourns a student from the row behind you.
Personally, you’d also be much more excited about any hands-on lecture filled with commands.
But the recent lecture about git-annex and the object-tree was surprisingly captivating, so you’re
actually looking forward to today. “Shht! I want to hear this!”, you shush him with a wink.

“We will start by looking into the very first configuration you did, already before the course
started: The global Git configuration.” the lecturer says.

At one point in time, you likely followed instructions such as in Installation and configuration
(page 9) and configured your Git identity with the commands:

git config --global --add user.name "Elena Piscopia"
git config --global --add user.email elena@example.net

“What the above commands do is very simple: They search for a specific configuration file, and
set the variables specified in the command – in this case user name and user email address – to
the values provided with the command.” she explains.

“This general procedure, specifying a value for a configuration variable in a configuration file, is
how you can configure the different tools to your needs. The configuration, therefore, is really
easy. Even if you are only used to ticking boxes in the settings tab of a software tool so far,
it’s intuitive to understand how a configuration file in principle works and also how to use it.
The only piece of information you will need are the necessary files, or the command that writes
to them, and the available options for configuration, that’s it. And what’s really cool is that all
tools we’ll be looking at – Git, git-annex, and DataLad – can be configured using the git config
command77. Therefore, once you understand the syntax of this command, you already know
half of what’s relevant. The other half is understanding what you’re doing. Now then, let’s learn
how to configure settings, but also understand what we’re doing with these configurations.”

“This seems easy enough”, you think. Let’s see what types of configurations there are.

Git config files

The user name and email configuration is a user-specific configuration (called global configura-
tion by Git), and therefore applies to your user account. Wherever on your computer you run
a Git, git-annex, or DataLad command, this global configuration will associate the name and
email address you supplied in the git config commands above with this action. For example,
whenever you datalad save, the information in this file is used for the history entry about
commit author and email.

77 As an alternative to a git config command, you could also run configuration templates or procedures (see
Configurations to go (page 120)) that apply predefined configurations or in some cases even add the information to
the configuration file by hand and save it using an editor of your choice.

10.1. DIY configurations 109

The DataLad Handbook, Release 0.12.0+519.g04985082

Apart from global Git configurations, there are also system-wide78and repository configurations.
Each of these configurations resides in its own file. The global configuration is stored in a file
called .gitconfig in your home directory. Among your name and email address, this file can
store general per-user configurations, such as a default editor80, or highlighting options.

The repository-specific configurations apply to each individual repository. Their scope is more
limited than the global configuration (namely to a single repository), but it can overrule global
configurations: The more specific the scope of a configuration file is, the more important it is,
and the variables in the more specific configuration will take precedence over variables in less
specific configuration files. One could for example have vim configured to be the default editor
on a global scope, but could overrule this by setting the editor to nano in a given repository. For
this reason, the repository-specific configuration does not reside in a file in your home directory,
but in .git/config within every Git repository (and thus DataLad dataset).

Thus, there are three different scopes of Git configuration, and each is defined in a config file
in a different location. The configurations will determine how Git behaves. In principle, all of
these files can configure the same variables differently, but more specific scopes take precedence
over broader scopes. Conveniently, not only can DataLad and git-annex be configured with the
same command as Git, but in many cases they will also use exactly the same files as Git for their
own configurations.

Let’s find out how the repository-specific configuration file in the DataLad-101 superdataset
looks like:

$ cat .git/config
[core]

repositoryformatversion = 0
filemode = true
bare = false
logallrefupdates = true

[annex]
uuid = 283818cf-2b07-4a0e-ab28-2d5fcdb947ae
version = 5
backends = MD5E

[submodule "recordings/longnow"]
url = https://github.com/datalad-datasets/longnow-podcasts.git
active = true

[remote "roommate"]

(continues on next page)

78 The third scope of a Git configuration are the system wide configurations. These are stored (if they exist) in
/etc/gitconfig and contain settings that would apply to every user on the computer you are using. These configu-
rations are not relevant for DataLad-101, and we will thus skip them. You can read more about Git’s configurations
and different files here79.

79 https://git-scm.com/docs/git-config
80 If your default editor is vim and you do not like this, now can be the time to change it! Chose either of two

options:
1) Open up the file with an editor for your choice (e.g., nano81):

nano ~/.gitconfig

and either paste the following configuration or edit it if it already exists:

[core]
editor = nano

2) run the following command, but exchange nano with an editor of your choice:

git config --global --add core.editor "nano"

81 https://www.howtogeek.com/howto/42980/the-beginners-guide-to-nano-the-linux-command-line-text-editor/

10.1. DIY configurations 110

https://git-scm.com/docs/git-config
https://www.howtogeek.com/howto/42980/the-beginners-guide-to-nano-the-linux-command-line-text-editor/

The DataLad Handbook, Release 0.12.0+519.g04985082

(continued from previous page)

url = ../mock_user/DataLad-101
fetch = +refs/heads/*:refs/remotes/roommate/*
annex-uuid = fa947123-aeb1-4096-9399-a47a5bb50446
annex-ignore = false

This file consists of so called “sections” with the section names in square brackets (e.g., core).
Occasionally, a section can have subsections: This is indicated by subsection names in quotation
marks after the section name. For example, roommate is a subsection of the section remote.
Within each section, variable = value pairs specify configurations for the given (sub)section.

The first section is called core – as the name suggests, this configures core Git functionality.
There are many more76 configurations than the ones in this config file, but they are related to
Git, and less related or important to the configuration of a DataLad dataset. We will use this
section to showcase the anatomy of the git config command. If for example you would want
to specifically configure nano to be the default editor in this dataset, you can do it like this:

$ git config --local --add core.editor "nano"

The command consists of the base command git config, a specification of the scope of the
configuration with the --local flag, a name specification consisting of section and key with the
notation section.variable (here: core.editor), and finally the value specification "nano".

Let’s see what has changed:

$ cat .git/config
[core]

repositoryformatversion = 0
filemode = true
bare = false
logallrefupdates = true
editor = nano

[annex]
uuid = 283818cf-2b07-4a0e-ab28-2d5fcdb947ae
version = 5
backends = MD5E

[submodule "recordings/longnow"]
url = https://github.com/datalad-datasets/longnow-podcasts.git
active = true

[remote "roommate"]
url = ../mock_user/DataLad-101
fetch = +refs/heads/*:refs/remotes/roommate/*
annex-uuid = fa947123-aeb1-4096-9399-a47a5bb50446
annex-ignore = false

With this additional line in your repositories Git configuration, nano will be used as a default
editor regardless of the configuration in your global or system-wide configuration. Note that the
flag --local applies the configuration to your repository’s .git/config file, whereas --global
would apply it as a user specific configuration, and --system as a system-wide configuration. If
you would want to change this existing line in your .git/config file, you would replace --add
with --replace-all such as in:

git config --local --replace-all core.editor "vim"

76 https://git-scm.com/docs/git-config#Documentation/git-config.txt-corefileMode

10.1. DIY configurations 111

https://git-scm.com/docs/git-config#Documentation/git-config.txt-corefileMode

The DataLad Handbook, Release 0.12.0+519.g04985082

to configure vim to be your default editor.

(Note that while being a good toy example, it is not a common thing to configure repository-
specific editors)

This example demonstrated the structure of a git config command. By specifying the name
option with section.variable (or section.subsection.variable if there is a subsection), and
a value, one can configure Git, git-annex, and DataLad. Most of these configurations will be
written to a config file of Git, depending on the scope (local, global, system-wide) specified in
the command.

Find out more

If things go wrong
If something goes wrong during the git config command, for example you end up
having two keys of the same name because you added a key instead of replacing an
existing one, you can use the --unset option to remove the line. Alternatively, you can
also open the config file in an editor and remove or change sections by hand.

The only information you need, therefore, is the name of a section and variable to configure, and
the value you want to specify. But in many cases it is also useful to find out which configurations
are already set in which way and where. For this, the git config --list --show-origin is
useful. It will display all configurations and their location:

$ git config --list --show-origin
file:/home/bob/.gitconfig user.name=Bob McBobface
file:/home/bob/.gitconfig user.email=bob@mcbobface.com
file:/home/bob/.gitconfig core.editor=vim
file:/home/bob/.gitconfig annex.security.allowed-url-schemes=http https file
file:.git/config core.repositoryformatversion=0
file:.git/config core.filemode=true
file:.git/config core.bare=false
file:.git/config core.logallrefupdates=true
file:.git/config annex.uuid=1f83595e-bcba-4226-aa2c-6f0153eb3c54
file:.git/config annex.version=5
file:.git/config annex.backends=MD5E
file:.git/config submodule.recordings/longnow.url=https://github.com/datalad-datasets/
→˓longnow-podcasts.git
file:.git/config submodule.recordings/longnow.active=true
file:.git/config remote.roommate.url=../mock_user/onemoredir/DataLad-101
file:.git/config remote.roommate.fetch=+refs/heads/*:refs/remotes/roommate/*
file:.git/config remote.roommate.annex-uuid=a5ae24de-1533-4b09-98b9-cd9ba6bf303c
file:.git/config remote.roommate.annex-ignore=false
file:.git/config submodule.longnow.url=https://github.com/datalad-datasets/longnow-
→˓podcasts.git
file:.git/config submodule.longnow.active=true

This example shows some configurations in the global .gitconfig file, and the configurations
within DataLad-101/.git/config. The command is very handy to display all configurations at
once to identify configuration problems, find the right configuration file to make a change to,
or simply remind oneself of the existing configurations, and it is a useful helper to keep in the
back of your head.

At this point you may feel like many of these configurations or the configuration file inside
of DataLad-101 do not appear to be intuitively understandable enough to confidently apply
changes to them, or identify necessary changes. And indeed, most of the sections and variables

10.1. DIY configurations 112

The DataLad Handbook, Release 0.12.0+519.g04985082

or values in there are irrelevant for understanding the book, your dataset, or DataLad, and
can just be left as they are. The previous section merely served to de-mystify the git config
command and the configuration files. Nevertheless, it might be helpful to get an overview about
the meaning of the remaining sections in that file, and the following hidden section can give
you a glimpse of this.

Find out more

More on this config file
The second section of .git/config is a git-annex configuration. As mentioned above,
git-annex will use the Git config file for some of its configurations. For example, it lists
the repository as a “version 5 repository”, and gives the dataset its own git-annex UUID.
While the “annex-uuid”82 looks like yet another cryptic random string of characters, you
have seen a UUID like this before: A git annex whereis displays information about
where the annexed content in a dataset is with these UUIDs. This section also specifies
the supported backends in this dataset. If you have read the hidden section in the section
Data integrity (page 77) you will recognize the name “MD5E”. This is the hash function
used to generate the annexed files keys and thus paths in the object tree. All backends
specified in this file (it can be a list) can be used to hash your files.
You may recognize the third part of the configuration, the subsection "recordings/
longnow" in the section submodule. Clearly, this is a reference to the longnow podcasts
we cloned as a subdataset. The name submodule is Git terminology, and describes a Git
repository inside of another Git repository – just like the super- and subdataset princi-
ples you discovered in the section Dataset nesting (page 46). When you clone a DataLad
dataset as a subdataset, it gets registered in this file. For each subdataset, an individual
submodule entry will store the information about the subdataset’s --source or origin (the
“url”). Thus, every subdataset (and sub-subdataset, and so forth) in your dataset will be
listed in this file. If you want, go back to section Install datasets (page 39) to see that
the “url” is the same URL we cloned the longnow dataset from, and go back to section
Looking without touching (page 83) to remind yourself of how cloning a dataset with
subdatasets looked and felt like.
Another interesting part is the last section, “remote”. Here we can find the sibling “room-
mate” we defined in Networking (page 99). The term remote is Git-terminology and is
used to describe other repositories or DataLad datasets that the repository knows about
and tracks. This file, therefore, is where DataLad registered the sibling with datalad
siblings add, and thanks to it you can collaborate with your room mate. Note the path
given as a value to the url variable. If at any point either your superdataset or the remote
moves on your file system, the association between the two datasets breaks – this can be
fixed by adjusting this path, and a demonstration of this is in section Miscellaneous file
system operations (page 193). fetch contains a specification which parts of the repository
are updated – in this case everything (all of the branches). Lastly, the annex-ignore =
false configuration allows git-annex to query the remote when it tries to retrieve data
from annexed content.

82 A UUID is a universally unique identifier – a 128-bit number that unambiguously identifies information.

.git/config versus other (configuration) files

One crucial aspect distinguishes the .git/config file from many other files in your dataset:
Even though it is part of your dataset, it won’t be shared together with the dataset. The reason
for this is that this file is not version controlled, as it lies within the .git directory. Repository-

10.1. DIY configurations 113

The DataLad Handbook, Release 0.12.0+519.g04985082

specific configurations within your .git/config file are thus not written to history. Any local
configuration in .git/config applies to the dataset, but it does not stick to the dataset. One
can have the misconception that because the configurations were made in the dataset, these
configurations will also be shared together with the dataset. .git/config, however, behaves just
as your global or system-wide configurations. These configurations are in effect on a system, or
for a user, or for a dataset, but are not shared. A datalad clone command of someone’s dataset
will not get your their editor configuration, should they have included one in their config file.
Instead, upon a datalad clone, a new config file will be created.

This means, however, that configurations that should “stick” to a dataset need to be defined in
different files – files that are version controlled. The next section will talk about them.

10.2 More on DIY configurations

As the last section already suggest, within a Git repository, .git/config is not the only configu-
ration file. There are also .gitmodules and .gitattributes, and in DataLad datasets there also
is a .datalad/config file.

All of these files store configurations, but have an important difference: They are version con-
trolled, and upon sharing a dataset these configurations will be shared as well. An example
for a shared configuration is the one that the text2git configuration template applied: In the
shared copy of your dataset, text files are also saved with Git, and not git-annex (see section
Networking (page 99)). The configuration responsible for this behavior is in a .gitattributes
file, and we’ll start this section by looking into it.

.gitattributes

This file lies right in the root of your superdataset:

$ cat .gitattributes

* annex.backend=MD5E
**/.git* annex.largefiles=nothing
* annex.largefiles=(not(mimetype=text/*)and(largerthan=0))

This looks neither spectacular nor pretty. Also, it does not follow the section-option-value
organization of the .git/config file anymore. Instead, there are three lines, and all of these
seem to have something to do with the configuration of git-annex. There even is one key word
that you recognize: MD5E. If you have read the hidden section in Data integrity (page 77)
you will recognize it as a reference to the type of key used by git-annex to identify and store
file content in the object-tree. The first row, * annex.backend=MD5E, therefore translates to
“Everything in this directory should be hashed with a MD5E hash function”. But what is the
rest? We’ll start with the last row:

* annex.largefiles=(not(mimetype=text/*))

Uhhh, cryptic. The lecturer explains:

“git-annex will annex, that is, store in the object-tree, anything it considers to be a “large file”.
By default, anything in your dataset would be a “large file”, that means anything would be
annexed. However, in section Data integrity (page 77) I already mentioned that exceptions to
this behavior can be defined based on

10.2. More on DIY configurations 114

The DataLad Handbook, Release 0.12.0+519.g04985082

1. file size

2. and/or path/pattern, and thus for example file extensions, or names, or file types (e.g.,
text files, as with the text2git configuration template).

“In .gitattributes, you can define what a large file and what is not by simply telling git-annex
by writing such rules.”

What you can see in this .gitattributes file is a rule based on file types: With
(not(mimetype=text/*))87, the text2git configuration template configured git-annex to re-
gard all files of type text not as a large file. Thanks to this little line, your text files are not
annexed, but stored directly in Git.

The patterns * and ** are so-called “wildcards” used in globbing. * matches any file or directory
in the current directory, and ** matches all files and directories in the current directory and
subdirectories. In technical terms, ** matches recursively. The third row therefore translates to
“Do not annex anything that is a text file in this directory” for git-annex.

However, rules can be even simpler. The second row simply takes a complete directory (.git)
and instructs git-annex to regard nothing in it as a “large file”. The second row, **/.git* annex.
largefiles=nothing therefore means that no .git repository in this directory or a subdirectory
should be considered a “large file”. This way, the .git repositories are protected from being
annexed. If you had a single file (myfile.pdf) you would not want annexed, specifying a rule
such as:

myfile.pdf annex.largefiles=nothing

will keep it stored in Git. To see an example of this, navigate into the longnow subdataset, and
view this dataset’s .gitattributes file:

$ cat recordings/longnow/.gitattributes
* annex.backend=MD5E
**/.git* annex.largefiles=nothing
README.md annex.largefiles=nothing

The relevant part is README.md annex.largefiles=nothing. This instructs git-annex to specifi-
cally not annex README.md.

Lastly, if you wanted to configure a rule based on size, you could add a row such as:

** annex.largefiles(largerthan=20kb)

to store only files exceeding 20KB in size in git-annex88.
87 When opening any file on a UNIX system, the file does not need to have a file extension (such as .txt, .pdf,

.jpg) for the operating system to know how to open or use this file (in contrast to Windows, which does not know
how to open a file without an extension). To do this, Unix systems rely on a file’s MIME type – an information about
a file’s content. A .txt file for example has MIME type text/plain as does a bash script (.sh), a Python script has
MIME type text/x-python, a .jpg file is image/jpg, and a .pdf file has MIME type application/pdf. You can find
out the MIME type of a file by running:

$ file --mime-type path/to/file

88 Specifying annex.largefiles in your .gitattributes file will make the configuration “portable” – shared copies of
your dataset will retain these configurations. You could however also set largefiles rules in your .git/config file.
Rules specified in there take precendence over rules in .gitattributes. You can set them using the git config
command:

$ git config annex.largefiles 'largerthan=100kb and not (include=*.c or include=*.h)'

The above command annexes files larger than 100KB, and will never annex files with a .c or .h extension.

10.2. More on DIY configurations 115

The DataLad Handbook, Release 0.12.0+519.g04985082

As you may have noticed, unlike .git/config files, there can be multiple .gitattributes files
within a dataset. So far, you have seen one in the root of the superdataset, and in the root of
the longnow subdataset. In principle, you can add one to every directory-level of your dataset.
For example, there is another .gitattributes file within the .datalad directory:

$ cat .datalad/.gitattributes

config annex.largefiles=nothing
metadata/aggregate* annex.largefiles=nothing
metadata/objects/** annex.largefiles=(anything)

As with Git configuration files, more specific or lower-level configurations take precedence over
more general or higher-level configurations. Specifications in a subdirectory can therefore over-
rule specifications made in the .gitattributes file of the parent directory.

In summary, the .gitattributes files will give you the possibility to configure what should be
annexed and what should not be annexed up to individual file level. This can be very handy, and
allows you to tune your dataset to your custom needs. For example, files you will often edit by
hand could be stored in Git if they are not too large to ease modifying them89. Once you know
the basics of this type of configuration syntax, writing your own rules is easy. For more tips on
how configure git-annex’s content management in .gitattributes, take a look at this83 page
of the git-annex documentation. Later however you will see preconfigured DataLad procedures
such as text2git that can apply useful configurations for you, just as text2git added the last
line in the root .gitattributes file.

.gitmodules

On last configuration file that Git creates is the .gitmodules file. There is one right in the root
of your dataset:

$ cat .gitmodules
[submodule "recordings/longnow"]

path = recordings/longnow
url = https://github.com/datalad-datasets/longnow-podcasts.git
branch = master
datalad-id = b3ca2718-8901-11e8-99aa-a0369f7c647e

Based on these contents, you might have already guessed what this file stores. .gitmodules is a
configuration file that stores the mapping between your own dataset and any subdatasets you
have installed in it. There will be an entry for each submodule (subdataset) in your dataset.
The name submodule is Git terminology, and describes a Git repository inside of another Git
repository, i.e., the super- and subdataset principles. Upon sharing your dataset, the information
about subdatasets and where to retrieve them from is stored and shared with this file.

Back in section Looking without touching (page 83) you may have already seen one additional
configuration option in a footnote: The datalad-recursiveinstall key. This key is defined on
a per subdataset basis, and if set to “skip”, the given subdataset will not be recursively installed
unless it is explicitly specified as a path to datalad get [-n/--no-data] -r. If you are a
maintainer of a superdataset with monstrous amounts of subdatasets, you can set this option

89 Should you ever need to, this file is also where one would change the git-annex backend in order to store new
files with a new backend. Switching the backend of all files (new as well as existing ones) requires the git annex
migrate command (see the documentation90 for more information on this command).

90 https://git-annex.branchable.com/git-annex-migrate/
83 https://git-annex.branchable.com/tips/largefiles/

10.2. More on DIY configurations 116

https://git-annex.branchable.com/tips/largefiles/
https://git-annex.branchable.com/git-annex-migrate/

The DataLad Handbook, Release 0.12.0+519.g04985082

and share it together with the dataset to prevent an accidental, large recursive installation in
particularly deeply nested subdatasets.

.datalad/config

DataLad adds a repository-specific configuration file as well. It can be found in the .datalad di-
rectory, and just like .gitattributes and .gitmodules it is version controlled and is thus shared
together with the dataset. One can configure many options84, but currently, our .datalad/
config file only stores a dataset ID. This ID serves to identify a dataset as a unit, across its entire
history and flavors. In a geeky way, this is your dataset’s social security number: It will only
exist one time on this planet.

$ cat .datalad/config
[datalad "dataset"]

id = ed80af32-5159-11ea-a727-6533dd7bb2c6

Note, though, that local configurations within a Git configuration file will take precedence over
configurations that can be distributed with a dataset. Otherwise, dataset updates with datalad
update (or, for Git-users, git pull) could suddenly and unintentionally alter local DataLad
behavior that was specifically configured.

Writing to configuration files other than .git/config

“Didn’t you say that knowing the git config command is already half of what I need to know?”
you ask. “Now there are three other configuration files, and I do not know with which command
I can write into these files.”

“Excellent question”, you hear in return, “but in reality, you do know: it’s also the git config
command. The only part of it you need to adjust is the -f, --file parameter. By default,
the command writes to a Git config file. But it can write to a different file if you specify it
appropriately. For example

git config --file=.gitmodules --replace-all submodule."name".url "new URL"

will update your submodule’s URL. Keep in mind though that you would need to commit this
change, as .gitmodules is version controlled”.

Let’s try this:

$ git config --file=.gitmodules --replace-all submodule."recordings/longnow".url
→˓"git@github.com:datalad-datasets/longnow-podcasts.git"

This command will replace the submodule’s https URL with an SSH URL. The latter is often
used if someone has an SSH key pair and added the public key to their GitHub account (you
can read more about this here85). We will revert this change shortly, but use it to show the
difference between a git config on a .git/config file and on a version controlled file:

$ datalad status
modified: .gitmodules (file)

84 http://docs.datalad.org/en/latest/generated/datalad.config.html
85 https://help.github.com/en/articles/which-remote-url-should-i-use

10.2. More on DIY configurations 117

http://docs.datalad.org/en/latest/generated/datalad.config.html
https://help.github.com/en/articles/which-remote-url-should-i-use

The DataLad Handbook, Release 0.12.0+519.g04985082

$ git diff
diff --git a/.gitmodules b/.gitmodules
index 37b3468..c6b1b68 100644
--- a/.gitmodules
+++ b/.gitmodules
@@ -1,5 +1,5 @@
[submodule "recordings/longnow"]

path = recordings/longnow
- url = https://github.com/datalad-datasets/longnow-podcasts.git
+ url = git@github.com:datalad-datasets/longnow-podcasts.git

branch = master
datalad-id = b3ca2718-8901-11e8-99aa-a0369f7c647e

As these two commands show, the .gitmodules file is modified. The https URL has been deleted
(note the -, and a SSH URL has been added. To keep these changes, we would need to datalad
save them. However, as we want to stay with https URLs, we will just checkout this change –
using a Git tool to undo an unstaged modification.

$ git checkout .gitmodules
$ datalad status
Updated 1 path from the index
nothing to save, working tree clean

Note, though, that the .gitattributes file can not be modified with a git config command.
This is due to its different format that does not comply to the section.variable.value structure
of all other configuration files. This file, therefore, has to be edited by hand, with an editor of
your choice.

Environment variables

An environment variable is a variable set up in your shell that affects the way the shell or certain
software works – for example the environment variables HOME, PWD, or PATH91. Configuration
options that determine the behavior of Git, git-annex, and DataLad that could be defined in
a configuration file can also be set (or overridden) by the associated environment variables of
these configuration options. Many configuration items have associated environment variables.
If this environment variable is set, it takes precedence over options set in configuration files, thus
providing both an alternative way to define configurations as well as an override mechanism.
For example, the user.name configuration of Git can be overridden by its associated environment
variable, GIT_AUTHOR_NAME. Likewise, one can define the environment variable instead of setting
the user.name configuration in a configuration file.

91 Some more on environment variables: Names of environment variables are often all-uppercase. While the $
is not part of the name of the environment variable, it is necessary to refer to the environment variable: To reference
the value of the environment variable HOME for example you would need to use echo $HOME and not echo HOME.
However, environment variables are set without a leading $. There are several ways to set an environment variable
(note that there are no spaces before and after the = !), leading to different levels of availability of the variable:

• THEANSWER=42 <command> makes the variable THEANSWER available for the process in <command>. For example,
DATALAD_LOG_LEVEL=debug datalad get <file> will execute the datalad get command (and only this one)
with the log level set to “debug”.

• export THEANSWER=42 makes the variable THEANSWER available for other processes in the same session, but it
will not be available to other shells.

• echo 'export THEANSWER=42' >> ~/.bashrc will write the variable definition in the .bashrc file and thus
available to all future shells of the user (i.e., this will make the variable permanent for the user)

To list all of the configured environment variables, type env into your terminal.

10.2. More on DIY configurations 118

The DataLad Handbook, Release 0.12.0+519.g04985082

Git, git-annex, and DataLad have more environment variables than anyone would want to re-
member. Here86 is a good overview on Git’s most useful available environment variables for
a start. All of DataLad’s configuration options can be translated to their associated environ-
ment variables. Any environment variable with a name that starts with DATALAD_ will be avail-
able as the corresponding datalad. configuration variable, replacing any __ (two underscores)
with a hyphen, then any _ (single underscore) with a dot, and finally converting all letters
to lower case. The datalad.log.level configuration option thus is the environment variable
DATALAD_LOG_LEVEL.

Summary

This has been an intense lecture, you have to admit. One definite take-away from it has been
that you now know a second reason why the hidden .git and .datalad directory contents and
also the contents of .gitmodules and .gitattributes should not be carelessly tampered with –
they contain all of the repositories configurations.

But you now also know how to modify these configurations with enough care and background
knowledge such that nothing should go wrong once you want to work with and change them.
You can use the git config command for Git configuration files on different scopes, and even
the .gitmodules or datalad/config files. Of course you do not yet know all of the avail-
able configuration options. However, you already know some core Git configurations such as
name, email, and editor. Even more important, you know how to configure git-annex’s content
management based on largefile rules, and you understand the majority of variables within
.gitmodules or the sections in .git/config. Slowly, you realize with pride, you’re more and
more becoming a DataLad power-user.

Write a note about configurations in datasets into notes.txt.

$ cat << EOT >> notes.txt
Configurations for datasets exist on different levels
(systemwide, global, and local), and in different types
of files (not version controlled (git)config files, or
version controlled .datalad/config, .gitattributes, or
gitmodules files), or environment variables.
With the exception of .gitattributes, all configuration
files share a common structure, and can be modified with
the git config command, but also with an editor by hand.

Depending on whether a configuration file is version
controlled or not, the configurations will be shared together
with the dataset. More specific configurations and not-shared
configurations will always take precedence over more global or
shared configurations, and environment variables take precedence
over configurations in files.

The git config --list --show-origin command is a useful tool
to give an overview over existing configurations. Particularly
important may be the .gitattributes file, in which one can set
rules for git-annex about which files should be version-controlled
with Git instead of being annexed.

EOT

86 https://git-scm.com/book/en/v2/Git-Internals-Environment-Variables

10.2. More on DIY configurations 119

https://git-scm.com/book/en/v2/Git-Internals-Environment-Variables

The DataLad Handbook, Release 0.12.0+519.g04985082

$ datalad save -m "add note on configurations and git config"
add(ok): notes.txt (file)
save(ok): . (dataset)
action summary:
add (ok: 1)
save (ok: 1)

10.3 Configurations to go

The past two sections should have given you a comprehensive overview on the different config-
uration options the tools Git, git-annex, and DataLad provide. They not only showed you a way
to configure everything you may need to configure, but also gave explanations about what the
configuration options actually mean.

But figuring out which configurations are useful and how to apply them are also not the eas-
iest tasks. Therefore, some clever people decided to assist with these tasks, and created pre-
configured procedures that process datasets in a particular way. These procedures can be shipped
within DataLad or its extensions, lie on a system, or can be shared together with datasets.

One of such procedures is the text2git configuration. In order to learn about procedures in
general, let’s demystify what the text2git procedure exactly is: It is nothing more than a simple
script that

• writes the relevant configuration (annex_largefiles = '(not(mimetype=text/*))', i.e.,
“Do not put anything that is a text file in the annex”) to the .gitattributes file of a
dataset, and

• saves this modification with the commit message “Instruct annex to add text files to Git”.

This particular procedure lives in a script called cfg_text2git in the sourcecode of DataLad.
The amount of code in this script is not large, and the relevant lines of code are highlighted:

import sys
import os.path as op
from datalad.distribution.dataset import require_dataset

ds = require_dataset(
sys.argv[1],
check_installed=True,
purpose='configuration')

the relevant configuration:
annex_largefiles = '(not(mimetype=text/*))'
check existing configurations:
attrs = ds.repo.get_gitattributes('*')
if not already an existing configuration, configure git-annex with the above rule
if not attrs.get('*', {}).get(

'annex.largefiles', None) == annex_largefiles:
ds.repo.set_gitattributes([

('*', {'annex.largefiles': annex_largefiles})])

this saves and commits the changed .gitattributes file
git_attributes_file = op.join(ds.path, '.gitattributes')
ds.save(

(continues on next page)

10.3. Configurations to go 120

The DataLad Handbook, Release 0.12.0+519.g04985082

(continued from previous page)

git_attributes_file,
message="Instruct annex to add text files to Git",

)

Just like cfg_text2git, all DataLad procedures are executables (such as a script, or compiled
code). In principle, they can be written in any language, and perform any task inside of a
dataset. The text2git configuration for example applies a configuration for how git-annex
treats different file types. Other procedures do not only modify .gitattributes, but can also
populate a dataset with particular content, or automate routine tasks such as synchronizing
dataset content with certain siblings. What makes them a particularly versatile and flexible tool
is that anyone can write their own procedures. If a workflow is a standard in a team and needs
to be applied often, turning it into a script can save time and effort. By pointing DataLad to
the location the procedures reside in they can be applied, and by including them in a dataset
they can even be shared. And even if the script is simple, it is very handy to have preconfigured
procedures that can be run in a single command line call. In the case of text2git, all text files in
a dataset will be stored in Git – this is a useful configuration that is applicable to a wide range of
datasets. It is a shortcut that spares naive users the necessity to learn about the .gitattributes
file when setting up a dataset.

To find out available procedures, the command datalad run-procedure --discover
(datalad-run-procedure manual) is helpful. This command will make DataLad search the
default location for procedures in a dataset, the source code of DataLad or installed DataLad
extensions, and the default locations for procedures on the system for available procedures:

$ datalad run-procedure --discover
cfg_hirni (/home/adina/env/handbook/lib/python3.7/site-packages/datalad_hirni/resources/
→˓procedures/cfg_hirni.py) [python_script]
cfg_bids (/home/adina/repos/datalad-neuroimaging/datalad_neuroimaging/resources/
→˓procedures/cfg_bids.py) [python_script]
ria_post_install (/home/adina/repos/git-annex-ria-remote/ria_remote/resources/procedures/
→˓ria_post_install.py) [python_script]
cfg_metadatatypes (/home/adina/repos/datalad/datalad/resources/procedures/cfg_
→˓metadatatypes.py) [python_script]
cfg_text2git (/home/adina/repos/datalad/datalad/resources/procedures/cfg_text2git.py)␣
→˓[python_script]
cfg_yoda (/home/adina/repos/datalad/datalad/resources/procedures/cfg_yoda.py) [python_
→˓script]

The output shows that in this particular dataset, on the particular system the book is written on,
there are at least three procedures available: cfg_metadatatypes, cfg_text2git, and cfg_yoda.
It also lists where they are stored – in this case, they are all part of the source code of DataLad92.

• cfg_yoda configures a dataset according to the yoda principles – the section YODA: Best
practices for data analyses in a dataset (page 129) talks about this in detail.

• cfg_text2git configures text files to be stored in Git.

• cfg_metadatatypes lets users configure additional metadata types – more about this in a
later section on DataLad’s metadata handling.

92 In theory, because procedures can exist on different levels, and because anyone can create (and thus name)
their own procedures, there can be name conflicts. The order of precedence in such cases is: user-level, system-
level, dataset, DataLad extension, DataLad, i.e., local procedures take precedence over those coming from “outside”
via datasets or datalad extensions. If procedures in a higher-level dataset and a subdataset have the same name, the
procedure closer to the dataset run-procedure is operating on takes precedence.

10.3. Configurations to go 121

The DataLad Handbook, Release 0.12.0+519.g04985082

Applying procedures

datalad run-procedure not only discovers but also executes procedures. If given the name of a
procedure, this command will apply the procedure to the current dataset, or the dataset that is
specified with the -d/--dataset flag:

datalad run-procedure [-d <PATH>] cfg_text2git

The typical workflow is to create a dataset and apply a procedure afterwards. However, some
procedures shipped with DataLad or its extensions with a cfg_ prefix can also be applied right at
the creation of a dataset with the -c/--cfg-proc <name> option in a datalad create command.
This is a peculiarity of these procedures because, by convention, all of these procedures are
written to not require arguments. The command structure looks like this:

datalad create -c text2git DataLad-101

Note that the cfg_ prefix of the procedures is omitted in these calls to keep it extra simple
and short. The available procedures in this example (cfg_yoda, cfg_text2git) could thus be
applied within a datalad create as

• datalad create -c yoda <DSname>

• datalad create -c text2git <DSname>

Find out more

Applying multiple procedures
If you want to apply several configurations at once, feel free to do so, for example like
this:

$ datalad create -c yoda -c text2git

Find out more

Applying procedures in subdatasets
Procedures can be applied in datasets on any level in the dataset hierarchy, i.e., also in
subdatasets. Note, though, that a subdataset will show up as being modified in datalad
status in the superdataset after applying a procedure. This is expected, and it would also
be the case with any other modification (saved or not) in the subdataset, as the version
of the subdataset that is tracked in the superdataset simply changed. A datalad save
in the superdataset will make sure that the version of the subdataset gets updated in
the superdataset. The section More on Dataset nesting (page 157) will elaborate on this
general principle later in the handbook.

As a general note, it can be useful to apply procedures early in the life of a dataset. Procedures
such as cfg_yoda (explained in detail in section YODA: Best practices for data analyses in a
dataset (page 129)), create files, change .gitattributes, or apply other configurations. If many
other (possibly complex) configurations are already in place, or if files of the same name as the
ones created by a procedure are already in existence, this can lead to unexpected problems or
failures, especially for naive users. Applying cfg_text2git to a default dataset in which one has
saved many text files already (as per default added to the annex) will not place the existing,
saved files into Git – only those text files created after the configuration was applied.

10.3. Configurations to go 122

The DataLad Handbook, Release 0.12.0+519.g04985082

Find out more

Write your own procedures
Procedures can come with DataLad or its extensions, but anyone can write their own
ones in addition, and deploy them on individual machines, or ship them within DataLad
datasets. This allows to automate routine configurations or tasks in a dataset. Some
general rules for creating a custom procedure are outlined below:

• A procedure can be any executable. Executables must have the appropriate permis-
sions and, in the case of a script, must contain an appropriate shebang.

– If a procedure is not executable, but its filename ends with .sh, it is automat-
ically executed via bash.

• Procedures can implement any argument handling, but must be capable of taking
at least one positional argument (the absolute path to the dataset they shall operate
on).

• Custom procedures rely heavily on configurations in .datalad/config (or the as-
sociated environment variables). Within .datalad/config, each procedure should
get an individual entry that contains at least a short “help” description on what the
procedure does. Below is a minimal .datalad/config entry for a custom proce-
dure:

[datalad "procedures.<NAME>"]
help = "This is a string to describe what the procedure does"

• By default, on GNU/Linux systems, DataLad will search for system-wide procedures
(i.e., procedures on the system level) in /etc/xdg/datalad/procedures, for user
procedures (i.e., procedures on the global level) in ~/.config/datalad/procedures,
and for dataset procedures (i.e., the local level93) in .datalad/procedures relative
to a dataset root. Note that .datalad/procedures does not exist by default, and
the procedures directory needs to be created first.

– Alternatively to the default locations, DataLad can be pointed to the loca-
tion of a procedure with a configuration in .datalad/config (or with the
help of the associated environment variables). The appropriate configuration
keys for .datalad/config are either datalad.locations.system-procedures
(for changing the system default), datalad.locations.user-procedures (for
changing the global default), or datalad.locations.dataset-procedures (for
changing the local default). An example .datalad/config entry for the local
scope is shown below.

[datalad "locations"]
dataset-procedures = relative/path/from/dataset-root

• By default, DataLad will call a procedure with a standard template defined by a
format string:

interpreter {script} {ds} {arguments}

where arguments can be any additional command line arguments a script (pro-
cedure) takes or requires. This default format string can be customized within
.datalad/config in datalad.procedures.<NAME>.call-format. An example .
datalad/config entry with a changed call format string is shown below.

[datalad "procedures.<NAME>"]
help = "This is a string to describe what the procedure does"
call-format = "python {script} {ds} {somearg1} {somearg2}"

10.3. Configurations to go 123

The DataLad Handbook, Release 0.12.0+519.g04985082

• By convention, procedures should leave a dataset in a clean state.
Therefore, in order to create a custom procedure, an executable script in the appropriate
location is fine. Placing a script myprocedure into .datalad/procedures will allow run-
ning datalad run-procedure myprocedure in your dataset, and because it is part of the
dataset it will also allow distributing the procedure. Below is a toy-example for a custom
procedure:

$ datalad create somedataset; cd somedataset
[INFO] Creating a new annex repo at /home/me/procs/somedataset
create(ok): /home/me/procs/somedataset (dataset)

$ mkdir .datalad/procedures
$ cat << EOT > .datalad/procedures/example.py
"""A simple procedure to create a file 'example' and store
it in Git, and a file 'example2' and annex it. The contents
of 'example' must be defined with a positional argument."""

import sys
import os.path as op
from datalad.distribution.dataset import require_dataset
from datalad.utils import create_tree

ds = require_dataset(
sys.argv[1],
check_installed=True,
purpose='showcase an example procedure')

this is the content for file "example"
content = """\
This file was created by a custom procedure! Neat, huh?
"""

create a directory structure template. Write
tmpl = {

'somedir': {
'example': content,

},
'example2': sys.argv[2] if sys.argv[2] else "got no input"

}

actually create the structure in the dataset
create_tree(ds.path, tmpl)

rule to store 'example' Git
ds.repo.set_gitattributes([('example', {'annex.largefiles': 'nothing'})])

save the dataset modifications
ds.save(message="Apply custom procedure")

EOT

10.3. Configurations to go 124

The DataLad Handbook, Release 0.12.0+519.g04985082

$ datalad save -m "add custom procedure"
add(ok): .datalad/procedures/example.py (file)
save(ok): . (dataset)
action summary:
add (ok: 1)
save (ok: 1)

At this point, the dataset contains the custom procedure example. This is how it can be
executed and what it does:

$ datalad run-procedure example "this text will be in the file 'example2'"
[INFO] Running procedure example
[INFO] == Command start (output follows) =====
[INFO] == Command exit (modification check follows) =====

#the directory structure has been created
$ tree
.

example2 -> .git/annex/objects/G6/zw/MD5E-s40--2ed1bce0db9f376c277a1ba6418f3ddd/
→˓MD5E-s40--2ed1bce0db9f376c277a1ba6418f3ddd

somedir
example

1 directory, 2 files

#lets check out the contents in the files
$ cat example2 && echo '' && cat somedir/example
this text will be in the file 'example2'
This file was created by a custom procedure! Neat, huh?

$ git config -f .datalad/config datalad.procedures.example.help "A toy example"
$ datalad save -m "add help description"
add(ok): .datalad/config (file)
save(ok): . (dataset)
action summary:
add (ok: 1)
save (ok: 1)

To find out more about a given procedure, you can ask for help:

$ datalad run-procedure --help-proc example
example (.datalad/procedures/example.py)
A toy example

Todo: It might be helpful to have (or reference) a table with all available procedures
and a short explanation. Maybe on the cheatsheet.

93 Note that we simplify the level of procedures that exist within a dataset by calling them local. Even
though they apply to a dataset just as local Git configurations, unlike Git’s local configurations in .git/
config, the procedures and procedure configurations in .datalad/config are committed and can be shared
together with a dataset. The procedure level local therefore does not exactly corresponds to the local scope
in the sense that Git uses it.

Summing up, DataLad’s run-procedure command is a handy tool with useful existing proce-

10.3. Configurations to go 125

The DataLad Handbook, Release 0.12.0+519.g04985082

dures but much flexibility for your own DIY procedure scripts. With the information of the last
three sections you should be able to write and understand necessary configurations, but you
can also rely on existing, preconfigured templates in the form of procedures, and even write
and distribute your own.

Therefore, envision procedures as helper-tools that can minimize technical complexities in a
dataset – users can concentrate on the actual task while the dataset is set-up, structured, pro-
cessed, or configured automatically with the help of a procedure. Especially in the case of
trainees and new users, applying procedures instead of doing relevant routines “by hand” can
help to ease working with the dataset, as the use case Student supervision in a research project
(page 302) showcases. Other than by users, procedures can also be triggered to automati-
cally run after any command execution if a command results matches a specific requirement.
If you are interested in finding out more about this, read on in section DataLad’s result hooks
(page 250).

Finally, make a note about running procedures inside of notes.txt:

$ cat << EOT >> notes.txt
It can be useful to use pre-configured procedures that can apply
configurations, create files or file hierarchies, or perform
arbitrary tasks in datasets. They can be shipped with DataLad,
its extensions, or datasets, and you can even write your own
procedures and distribute them. The "datalad run-procedure"
command is used to apply such a procedure to a dataset. Procedures
shipped with DataLad or its extensions starting with a "cfg" prefix
can also be applied at the creation of a dataset with
"datalad create -c <PROC-NAME> <PATH>" (omitting the "cfg" prefix).

EOT

$ datalad save -m "add note on DataLad's procedures"
add(ok): notes.txt (file)
save(ok): . (dataset)
action summary:
add (ok: 1)
save (ok: 1)

10.4 Summary

This has been a substantial amount of information regarding various configuration types, meth-
ods, and files. After this lecture, you have greatly broadened your horizon about configurations
of datasets:

• Configurations exist at different scopes and for different tools. Each of such configuration
scopes exists in an individual file, on a system-wide, global (user-specific) or local (repos-
itory specific) level. In addition to Git’s local scope in .git/config, DataLad introduces
configurations within .datalad/config that apply to a specific dataset, but are commit-
ted and therefore distributed. More specialized scopes take precedence over more global
scopes.

• Almost all configurations can be set with the git config. Its structure looks like this:

git config --local/--global/--system --add/remove-all/--list section.[subsection.
→˓]variable "value"

10.4. Summary 126

The DataLad Handbook, Release 0.12.0+519.g04985082

• The .git/config configuration file is not version controlled, other configuration files (.
gitmodules, .gitattributes, .datalad/config) however are, and can be shared together
with the dataset. Non-shared configurations will take precedence over shared configura-
tions in a dataset clone.

• Other tools than Git can be configured with the git config command as well. If the
configuration needs to be written to a file other than a .git(/)config file, supply a path
to this file with the -f/--file flag in a git config command.

• The .gitattributes file is the only configuration file the git config can not write to,
because it has a different layout. However, run-procedures or the user can write simple
rules into it that determine which files are annexed and which are stored in Git.

• DataLad’s run-procedures offer an easy and fast alternative to DIY configurations, struc-
turing, or processing of the dataset. They can be applied already at creation of a dataset
with datalad create -c <procedure>, or executed later with a datalad run-procedure
command.

Now what can I do with it?

Configurations are not a closed book for you anymore. What will probably be especially helpful
is your new knowledge about .gitattributes and DataLad’s run-procedure command that
allow you to configure the behavior of git-annex in your dataset.

10.4. Summary 127

CHAPTER

ELEVEN

MAKE THE MOST OUT OF DATASETS

Fig. 1: “Feel the force!”

11.1 A Data Analysis Project with DataLad

Time flies and the semester rapidly approaches the midterms. In DataLad-101, students are not
given an exam – instead, they are asked to complete and submit a data analysis project with
DataLad.

The lecturer hands out the requirements: The project. . .

• needs to be a data analysis project

• is to be prepared in the form of a DataLad dataset

• should incorporate DataLad whenever possible (data retrieval, publication, script execu-
tion, general version control) and

• needs to comply to the YODA principles

Luckily, the midterms are only in a couple of weeks, and a lot of the requirements of the project
will be taught in the upcoming sessions. Therefore, there’s little you can do to prepare for the

128

The DataLad Handbook, Release 0.12.0+519.g04985082

midterm than to be extra attentive on the next lectures on the YODA principles and DataLad’s
Python API.

11.2 YODA: Best practices for data analyses in a dataset

The last requirement for the midterm projects reads “needs to comply to the YODA principles”.
“What are the YODA principles?” you ask, as you have never heard of this before. “The topic
of today’s lecture: Organizational principles of data analyses in DataLad datasets. This lec-
ture will show you the basic principles behind creating, sharing, and publishing reproducible,
understandable, and open data analysis projects with DataLad.”, you hear in return.

The starting point. . .

Data analyses projects are very common, both in science and industry. But it can be very difficult
to produce a reproducible, let alone comprehensible data analysis project. Many data analysis
projects do not start out with a stringent organization, or fail to keep the structural organization
of a directory intact as the project develops. Often, this can be due to a lack of version-control.
In these cases, a project will quickly end up with many almost-identical scripts suffixed with
“_version_xyz”94, or a chaotic results structure split between various directories with names
such as results/, results_August19/, results_revision/ and now_with_nicer_plots/. Some-
thing like this is a very common shape a data science project may take after a while:

code/
code_final/

final_2/
main_script_fixed.py
takethisscriptformostthingsnow.py

utils_new.py
main_script.py
utils_new.py
utils_2.py
main_analysis_newparameters.py

main_script_DONTUSE.py
data/

data_updated/
dataset1/

datafile_a

dataset1/
datafile_a

outputs/
figures/

figures_new.py
figures_final_forreal.py

important_results/
random_results_file.tsv
results_for_paper/
results_for_paper_revised/
results_new_data/

random_results_file.tsv
random_results_file_v2.tsv

(continues on next page)

94 http://phdcomics.com/comics/archive.php?comicid=1531

11.2. YODA: Best practices for data analyses in a dataset 129

http://phdcomics.com/comics/archive.php?comicid=1531
http://phdcomics.com/comics/archive.php?comicid=1531

The DataLad Handbook, Release 0.12.0+519.g04985082

(continued from previous page)

[...]

All data analysis endeavors in directories like this can work, for a while, if there is a person
who knows the project well, and works on it all the time. But it inevitably will get messy
once anyone tries to collaborate on a project like this, or simply goes on a two-week va-
cation and forgets whether the function in main_analysis_newparameters.py or the one in
takethisscriptformostthingsnow.py was the one that created a particular figure.

But even if a project has an intuitive structure, and is version controlled, in many cases an
analysis script will stop working, or maybe worse, will produce different results, because the
software and tools used to conduct the analysis in the first place got an update. This update
may have come with software changes that made functions stop working, or work differently
than before. In the same vein, recomputing an analysis project on a different machine than the
one the analysis was developed on can fail if the necessary software in the required versions
is not installed or available on this new machine. The analysis might depend on software that
runs on a Linux machine, but the project was shared with a Windows user. The environment
during analysis development used Python 2, but the new system has only Python 3 installed.
Or one of the dependent libraries needs to be in version X, but is installed as version Y.

The YODA principles are a clear set of organizational standards for datasets used for data anal-
ysis projects that aim to overcome issues like the ones outlined above. The name stands for
“YODAs Organigram on Data Analysis”99. The principles outlined in YODA set simple rules
for directory names and structures, best-practices for version-controlling dataset elements and
analyses, facilitate usage of tools to improve the reproducibility and accountability of data anal-
ysis projects, and make collaboration easier. They are summarized in three basic principles, that
translate to both dataset structures and best practices regarding the analysis:

• P1: One thing, one dataset (page 130)

• P2: Record where you got it from, and where it is now (page 133)

• P3: Record what you did to it, and with what (page 135)

As you will see, complying to these principles is easy if you use DataLad. Let’s go through them
one by one:

P1: One thing, one dataset

Whenever a particular collection of files could be useful in more than one context, make them
a standalone, modular component. In the broadest sense, this means to structure your study
elements (data, code, computational environments, results, . . .) in dedicated directories. For
example:

• Store input data for an analysis in a dedicated inputs/ directory. Keep different formats
or processing-stages of your input data as individual, modular components: Do not mix
raw data, data that is already structured following community guidelines of the given

99 “Why does the acronym contain itself?” you ask confused. “That’s because it’s a recursive acronym100, where the
first letter stands recursively for the whole acronym.” you get in response. “This is a reference to the recursiveness
within a DataLad dataset – all principles apply recursively to all the subdatasets a dataset has.” “And what does all
of this have to do with Yoda?” you ask mildly amused. “Oh, well. That’s just because the DataLad team is full of
geeks.”

100 https://en.wikipedia.org/wiki/Recursive_acronym

11.2. YODA: Best practices for data analyses in a dataset 130

https://en.wikipedia.org/wiki/Recursive_acronym

The DataLad Handbook, Release 0.12.0+519.g04985082

field, or preprocessed data, but create one data component for each of them. And if
your analysis relies on two or more data collections, these collections should each be an
individual component, not combined into one.

• Store scripts or code used for the analysis of data in a dedicated code/ directory, outside
of the data component of the dataset.

• Collect results of an analysis in a dedicated outputs/ directory, and leave the input data
of an analysis untouched by your computations.

• Include a place for complete execution environments, for example singularity images95

or docker containers96101, in the form of an envs/ directory, if relevant for your analysis.

• And if you conduct multiple different analyses, create a dedicated project for each analy-
sis, instead of conflating them.

This, for example, would be a directory structure from the root of a superdataset of a very
comprehensive104data analysis project complying to the YODA principles:

ci/ # continuous integration configuration
.travis.yml

code/ # your code
tests/ # unit tests to test your code

test_myscript.py
myscript.py

docs # documentation about the project
build/
source/

envs # computational environments
Singularity

inputs/ # dedicated inputs/, will not be changed by an analysis
data/

dataset1/ # one stand-alone data component
(continues on next page)

95 https://singularity.lbl.gov/
96 https://www.docker.com/get-started

101 If you want to learn more about Docker and Singularity, or general information about containerized computa-
tional environments for reproducible data science, check out this section102 in the wonderful book The Turing Way103,
a comprehensive guide to reproducible data science, or read about it in section Computational reproducibility with
software containers (page 161).

102 https://the-turing-way.netlify.com/reproducible_environments/06/containers#Containers_section
103 https://the-turing-way.netlify.com/introduction/introduction
104 This directory structure is very comprehensive, and displays many best-practices for reproducible data science.

For example,

1. Within code/, it is best practice to add tests for the code. These tests can be run to check whether the code
still works.

2. It is even better to further use automated computing, for example continuous integration (CI) systems105,
to test the functionality of your functions and scripts automatically. If relevant, the setup for continuous
integration frameworks (such as Travis106) lives outside of code/, in a dedicated ci/ directory.

3. Include documents for fellow humans: Notes in a README.md or a HOWTO.md, or even proper docu-
mentation (for example using in a dedicated docs/ directory. Within these documents, include all relevant
metadata for your analysis. If you are conducting a scientific study, this might be authorship, funding, change
log, etc.

If writing tests for analysis scripts or using continuous integration is a new idea for you, but you want to learn
more, check out this excellent chapter on testing107 in the book The Turing Way108.

105 https://en.wikipedia.org/wiki/Continuous_integration
106 https://travis-ci.org
107 https://the-turing-way.netlify.com/testing/testing.html#Acceptance_testing
108 https://the-turing-way.netlify.com/introduction/introduction

11.2. YODA: Best practices for data analyses in a dataset 131

https://singularity.lbl.gov/
https://www.docker.com/get-started
https://the-turing-way.netlify.com/reproducible_environments/06/containers#Containers_section
https://the-turing-way.netlify.com/introduction/introduction
https://en.wikipedia.org/wiki/Continuous_integration
https://travis-ci.org
https://the-turing-way.netlify.com/testing/testing.html#Acceptance_testing
https://the-turing-way.netlify.com/introduction/introduction

The DataLad Handbook, Release 0.12.0+519.g04985082

(continued from previous page)

datafile_a
dataset2/

datafile_a
outputs/ # outputs away from the input data

important_results/
figures/

CHANGELOG.md # notes for fellow humans about your project
HOWTO.md
README.md

There are many advantages to this modular way of organizing contents. Having input data as
independent components that are not altered (only consumed) by an analysis does not conflate
the data for an analysis with the results or the code, thus assisting understanding the project for
anyone unfamiliar with it. But more than just structure, this organization aids modular reuse or
publication of the individual components, for example data. In a YODA-compliant dataset, any
processing stage of a data component can be reused in a new project or published and shared.
The same is true for a whole analysis dataset. At one point you might also write a scientific
paper about your analysis in a paper project, and the whole analysis project can easily become
a modular component in a paper project, to make sharing paper, code, data, and results easy.
The usecase Writing a reproducible paper (page 294) contains a step-by-step instruction on how
to build and share such a reproducible paper, if you want to learn more.

Fig. 2: Data are modular components that can be re-used easily.

The directory tree above and Figure 3 highlight different aspects of this principle. The direc-
tory tree illustrates the structure of the individual pieces on the file system from the point of
view of a single top-level dataset with a particular purpose. It for example could be an anal-
ysis dataset created by a statistician for a scientific project, and it could be shared between
collaborators or with others during development of the project. In this superdataset, code is
created that operates on input data to compute outputs, and the code and outputs are cap-
tured, version-controlled, and linked to the input data. Each input data in turn is a (potentially
nested) subdataset, but this is not visible in the directory hierarchy. Figure 3 in comparison
emphasizes a process view on a project and the nested structure of input subdataset: You can
see how the preprocessed data that serves as an input for the analysis datasets evolves from raw
data to standardized data organization to its preprocessed state. Within the data/ directory of

11.2. YODA: Best practices for data analyses in a dataset 132

The DataLad Handbook, Release 0.12.0+519.g04985082

the file system hierarchy displayed above one would find data datasets with their previous ver-
sion as a subdataset, and this is repeated recursively until one reaches the raw data as it was
originally collected at one point. A finished analysis project in turn can be used as a component
(subdataset) in a paper project, such that the paper is a fully reproducible research object that
shares code, analysis results, and data, as well as the history of all of these components.

Principle 1, therefore, encourages to structure data analysis projects in a clear and modular
fashion that makes use of nested DataLad datasets, yielding comprehensible structures and re-
usable components. Having each component version-controlled – regardless of size – will aid
keeping directories clean and organized, instead of piling up different versions of code, data, or
results.

P2: Record where you got it from, and where it is now

Its good to have data, but its even better if you and anyone you collaborate or share the project
or its components with can find out where the data came from, or how it is dependent on
or linked to other data. Therefore, this principle aims to attach this information, the data’s
provenance, to the components of your data analysis project.

Luckily, this is a no-brainer with DataLad, because the core data structure of DataLad, the
dataset, and many of the DataLad commands already covered up to now fulfill this principle.

If data components of a project are DataLad datasets, they can be included in an analysis super-
dataset as subdatasets. Thanks to datalad clone, information on the source of these subdatasets
is stored in the history of the analysis superdataset, and they can even be updated from those
sources if the original data dataset gets extended or changed. If you are including a file, for ex-
ample code from GitHub, the datalad download-url command (introduced in section Populate
a dataset (page 30)) will record the source of it safely in the dataset’s history. And if you add
anything to your dataset, from simple incremental coding progress in your analysis scripts up to
files that a colleague sent you via email, a plain datalad save with a helpful commit message
goes a very long way to fulfill this principle on its own already.

One core aspect of this principle is linking between re-usable data resource units (i.e., DataLad
subdatasets containing pure data). You will be happy to hear that this is achieved by simply
installing datasets as subdatasets. This part of this principle will therefore be absolutely obvious
to you because you already know how to install and nest datasets within datasets. “I might just
overcome my impostor syndrome if I experience such advanced reproducible analysis concepts
as being obvious”, you think with a grin.

11.2. YODA: Best practices for data analyses in a dataset 133

The DataLad Handbook, Release 0.12.0+519.g04985082

1
2

2
1

Fig. 3: Schematic illustration of two standalone data datasets installed as subdatasets into an
analysis project.

But more than linking datasets in a superdataset, linkage also needs to be established between
components of your dataset. Scripts inside of your code/ directory should point to data not as
absolute paths that would only work on your system, but instead as relative paths that will work
in any shared copy of your dataset. The next section demonstrates a YODA data analysis project
and will show concrete examples of this.

Lastly, this principle also includes moving, sharing, and publishing your datasets or its compo-
nents. It is usually costly to collect data, and economically unfeasible109 to keep it locked in
a drawer (or similarly out of reach behind complexities of data retrieval or difficulties in un-
derstanding the data structure). But conducting several projects on the same dataset yourself,
sharing it with collaborators, or publishing it is easy if the project is a DataLad dataset that
can be installed and retrieved on demand, and is kept clean from everything that is not part
of the data according to principle 1. Conducting transparent open science is easier if you can
link code, data, and results within a dataset, and share everything together. In conjunction
with principle 1, this means that you can distribute your analysis projects (or parts of it) in a
comprehensible form.

109 Substitute unfeasible with wasteful, impractical, or simply stupid if preferred.

11.2. YODA: Best practices for data analyses in a dataset 134

The DataLad Handbook, Release 0.12.0+519.g04985082

metadata access

data access
Virtual
data portal

PUBLISH

PUBLISH

Pristine raw data

ARCHIVE

Standardized data structure

suitable for data publication
PUBLISH

Preprocessed data

starting point for analyses
PUBLISH

Paper
B

Raw
data

Normalized

Analysis
A

Paper
A

Analysis
B

Preprocessed

Public
cloud

storage

Local shared
 access storage

Institutional
storage

Fig. 4: In a dataset that complies to the YODA principles, modular components (data, analysis
results, papers) can be shared or published easily.

Principle 2, therefore, facilitates transparent linkage of datasets and their components to other
components, their original sources, or shared copies. With the DataLad tools you learned to
master up to this point, you have all the necessary skills to comply to it already.

P3: Record what you did to it, and with what

This last principle is about capturing how exactly the content of every file came to be that was not
obtained from elsewhere. For example, this relates to results generated from inputs by scripts
or commands. The section Keeping track (page 52) already outlined the problem of associating
a result with an input and a script. It can be difficult to link a figure from your data analysis
project with an input data file or a script, even if you created this figure yourself. The datalad
run command however mitigates these difficulties, and captures the provenance of any output
generated with a datalad run call in the history of the dataset. Thus, by using datalad run in
analysis projects, your dataset knows which result was generated when, by which author, from
which inputs, and by means of which command.

With another DataLad command one can even go one step further: The command datalad
containers-run (it will be introduced in a later part of the book) performs a command execu-
tion within a configured containerized environment. Thus, not only inputs, outputs, command,
time, and author, but also the software environment are captured as provenance of a dataset
component such as a results file, and, importantly, can be shared together with the dataset in
the form of a software container.

With this last principle, your dataset collects and stores provenance of all the contents you
created in the wake of your analysis project. This established trust in your results, and enables
others to understand where files derive from.

11.2. YODA: Best practices for data analyses in a dataset 135

The DataLad Handbook, Release 0.12.0+519.g04985082

The YODA procedure

There is one tool that can make starting a yoda-compliant data analysis easier: DataLad’s yoda
procedure. Just as the text2git procedure from section Create a dataset (page 28), the yoda
procedure can be included in a datalad create command and will apply useful configurations
to your dataset:

$ datalad create -c yoda "my_analysis"

[INFO] Creating a new annex repo at /home/me/repos/testing/my_analysis
create(ok): /home/me/repos/testing/my_analysis (dataset)
[INFO] Running procedure cfg_yoda
[INFO] == Command start (output follows) =====
[INFO] == Command exit (modification check follows) =====

Let’s take a look at what configurations and changes come with this procedure:

$ tree -a

.
.gitattributes
CHANGELOG.md
code

.gitattributes
README.md

README.md

Let’s take a closer look into the .gitattributes files:

$ less .gitattributes

**/.git* annex.largefiles=nothing
CHANGELOG.md annex.largefiles=nothing
README.md annex.largefiles=nothing

$ less code/.gitattributes

* annex.largefiles=nothing

Summarizing these two glimpses into the dataset, this configuration has

1. included a code directory in your dataset

2. included three files for human consumption (README.md, CHANGELOG.md)

3. configured everything in the code/ directory to be tracked by Git, not git-annex110

4. and configured README.md and CHANGELOG.md in the root of the dataset to be tracked by
Git.

Your next data analysis project can thus get a head start with useful configurations and the start
of a comprehensible directory structure by applying the yoda procedure.

110 To re-read how .gitattributes work, go back to section DIY configurations (page 108), and to remind yourself
about how this worked for the text2git configuration, go back to section Data safety (page 75).

11.2. YODA: Best practices for data analyses in a dataset 136

The DataLad Handbook, Release 0.12.0+519.g04985082

Sources

This section is based on this comprehensive poster97 and these publicly available slides98 about
the YODA principles.

11.3 YODA-compliant data analysis projects

Now that you know about the YODA principles, it is time to start working on DataLad-101’s
midterm project. Because the midterm project guidelines require a YODA-compliant data anal-
ysis project, you will not only have theoretical knowledge about the YODA principles, but also
gain practical experience.

In principle, you can prepare YODA-compliant data analyses in any programming language of
your choice. But because you are already familiar with the Python111 programming language,
you decide to script your analysis in Python. Delighted, you find out that there is even a Python
API for DataLad’s functionality that you can read about in the hidden section below:

Find out more

DataLad’s Python API
“Whatever you can do with DataLad from the command line, you can also do it with Data-
Lad’s Python API”, begins the lecturer. “In addition to the command line interface you
are already very familiar with, DataLad’s functionality can also be used within interactive
Python sessions or Python scripts. This feature can help to automate dataset operations,
provides an alternative to the command line, and it is immensely useful when creating
reproducible data analyses.”
This short section will give you an overview on DataLad’s Python API and explore how
to make use of it in an analysis project. Together with the previous section on the YODA
principles, it is a good basis for a data analysis midterm project in Python.
All of DataLad’s user-oriented commands are exposed via datalad.api. Thus, any com-
mand can be imported as a stand-alone command like this:

>>> from datalad.api import <COMMAND>

Alternatively, to import all commands, one can use

>>> import datalad.api as dl

and subsequently access commands as dl.get(), dl.clone(), and so forth.
The developer documentation112 of DataLad lists an overview of all commands, but nam-
ing is congruent to the command line interface. The only functionality that is not avail-
able at the command line is datalad.api.Dataset, DataLad’s core Python data type. Just
like any other command, it can be imported like this:

>>> from datalad.api import Dataset

or like this:

>>> import datalad.api as dl
>>> dl.Dataset()

97 https://f1000research.com/posters/7-1965
98 https://github.com/myyoda/talk-principles

111 https://www.python.org/

11.3. YODA-compliant data analysis projects 137

https://f1000research.com/posters/7-1965
https://github.com/myyoda/talk-principles
https://www.python.org/
http://docs.datalad.org/en/latest/modref.html

The DataLad Handbook, Release 0.12.0+519.g04985082

A Dataset is a class113 that represents a DataLad dataset. In addition to the stand-alone
commands, all of DataLad’s functionality is also available via methods114 of this class.
Thus, these are two equally valid ways to create a new dataset with DataLad in Python:

>>> from datalad.api import create, Dataset
create as a stand-alone command
>>> create(path='scratch/test')
[INFO] Creating a new annex repo at /home/me/scratch/test
Out[3]: <Dataset path=/home/me/scratch/test>

create as a dataset method
>>> ds = Dataset(path='scratch/test')
>>> ds.create()
[INFO] Creating a new annex repo at /home/me/scratch/test
Out[3]: <Dataset path=/home/me/scratch/test>

As shown above, the only required parameter for a Dataset is the path to its location, and
this location may or may not exist yet.
Stand-alone functions have a dataset= argument, corresponding to the -d/--dataset
option in their command-line equivalent. You can specify the dataset= argument
with a path (string) to your dataset (such as dataset='.' for the current directory, or
dataset='path/to/ds' to another location). Alternatively, you can pass a Dataset in-
stance to it:

>>> from datalad.api import save, Dataset
use save with dataset specified as a path
>>> save(dataset='path/to/dataset/')
use save with dataset specified as a dataset instance
>>> ds = Dataset('path/to/dataset')
>>> save(dataset=ds, message="saving all modifications")
use save as a dataset method (no dataset argument)
>>> ds.save(message="saving all modifications")

Note: At the moment, dataset argument handling is not fully consistent across com-
mands. When executing commands outside of the dataset in question, path arguments
are sometimes interpreted as relative from the dataset path, and sometimes as relative
from the location the command is executed from. You can get consistent behavior (paths
relative to the dataset root) by using Dataset methods or passing Dataset instances to
the commands instead of specifying paths (strings) for dataset=.

Use cases for DataLad’s Python API
“Why should one use the Python API? Can we not do everything necessary via the com-
mand line already? Does Python add anything to this?” asks somebody.
It is completely up to on you and dependent on your preferred workflow whether you
decide to use the command line or the Python API of DataLad for the majority of tasks.
Both are valid ways to accomplish the same results. One advantage of using the Python
API is the Dataset though: Given that the command line datalad command has a startup
time (even when doing nothing) of ~200ms, this means that there is the potential for
substantial speed-up when doing many calls to the API, and using a persistent Dataset
object instance.

11.3. YODA-compliant data analysis projects 138

https://docs.python.org/3/tutorial/classes.html
https://docs.python.org/3/tutorial/classes.html#method-objects

The DataLad Handbook, Release 0.12.0+519.g04985082

112 http://docs.datalad.org/en/latest/modref.html
113 https://docs.python.org/3/tutorial/classes.html
114 https://docs.python.org/3/tutorial/classes.html#method-objects

Note: While there is a dedicated API for Python, DataLad’s functions can of course also be
used with other programming languages, such as Matlab, via standard system calls.

Even if you do not know or like Python, you can just copy-paste the code and follow along
– the high-level YODA principles demonstrated in this section generalize across programming
languages.

For your midterm project submission, you decide to create a data analysis on the iris flower data
set115. It is a multivariate dataset on 50 samples of each of three species of Iris flowers (Setosa,
Versicolor, or Virginica), with four variables: the length and width of the sepals and petals of
the flowers in centimeters. It is often used in introductory data science courses for statistical
classification techniques in machine learning, and widely available – a perfect dataset for your
midterm project!

Raw data as a modular, independent entity

The first YODA principle stressed the importance of modularity in a data analysis project: Every
component that could be used in more than one context should be an independent component.

The first aspect this applies to is the input data of your dataset: There can be thousands of ways
to analyze it, and it is therefore immensely helpful to have a pristine raw iris dataset that does
not get modified, but serves as input for these analysis. As such, the iris data should become a
standalone DataLad dataset. For the purpose of this analysis, the DataLad handbook provides
an iris_data dataset at https://github.com/datalad-handbook/iris_data.

You can either use this provided input dataset, or find out how to create an independent dataset
from scratch in the hidden section below.

Find out more

Creating an independent input dataset
If you acquire your own data for a data analysis, it will not magically exist as a DataLad
dataset that you can simply install from somewhere – you’ll have to turn it into a dataset
yourself. Any directory with data that exists on your computer can be turned into a
dataset with datalad create --force and a subsequent datalad save -m "add data" .
to first create a dataset inside of an existing, non-empty directory, and subsequently save
all of its contents into the history of the newly created dataset. And that’s it already –
it does not take anything more to create a stand-alone input dataset from existing data
(apart from restraining yourself from modifying it afterwards).
To create the iris_data dataset at https://github.com/datalad-handbook/iris_data we
first created a DataLad dataset. . .

115 https://en.wikipedia.org/wiki/Iris_flower_data_set

11.3. YODA-compliant data analysis projects 139

https://en.wikipedia.org/wiki/Iris_flower_data_set
https://en.wikipedia.org/wiki/Iris_flower_data_set
https://github.com/datalad-handbook/iris_data
https://github.com/datalad-handbook/iris_data

The DataLad Handbook, Release 0.12.0+519.g04985082

make sure to move outside of DataLad-101!
$ cd ../
$ datalad create iris_data
[INFO] Creating a new annex repo at /home/me/dl-101/iris_data
create(ok): /home/me/dl-101/iris_data (dataset)

and subsequently got the data from a publicly available GitHub Gist116 with a datalad
download-url command:

Find out more

What are GitHub Gists?
GitHub Gists are a particular service offered by GitHub that allow users
to share pieces of code snippets and other short/small standalone in-
formation. Find out more on Gists here117.

117 https://help.github.com/en/github/writing-on-github/creating-gists#
about-gists

$ cd iris_data
$ datalad download-url https://gist.githubusercontent.com/netj/8836201/
→˓raw/6f9306ad21398ea43cba4f7d537619d0e07d5ae3/iris.csv
[INFO] Downloading 'https://gist.githubusercontent.com/netj/8836201/raw/
→˓6f9306ad21398ea43cba4f7d537619d0e07d5ae3/iris.csv' into '/home/me/dl-
→˓101/iris_data/'
download_url(ok): /home/me/dl-101/iris_data/iris.csv (file)
add(ok): iris.csv (file)
save(ok): . (dataset)
action summary:
add (ok: 1)
download_url (ok: 1)
save (ok: 1)

Finally, we published (more on this later in this section) the dataset to GitHub.
With this setup, the iris dataset (a single comma-separated (.csv) file) is downloaded,
and, importantly, the dataset recorded where it was obtained from thanks to datalad
download-url, thus complying to the second YODA principle. This way, upon installation
of the dataset, DataLad knows where to obtain the file content from. You can datalad
clone the iris dataset and find out with a git annex whereis iris.csv command.

116 https://gist.github.com/netj/8836201

“Nice, with this input dataset I have sufficient provenance capture for my input dataset, and
I can install it as a modular component”, you think as you mentally tick off YODA principle
number 1 and 2. “But before I can install it, I need an analysis superdataset first.”

Building an analysis dataset

There is an independent raw dataset as input data, but there is no place for your analysis to
live, yet. Therefore, you start your midterm project by creating an analysis dataset. As this
project is part of DataLad-101, you do it as a subdataset of DataLad-101. Remember to specify
the --dataset option of datalad create to link it as a subdataset!

You naturally want your dataset to follow the YODA principles, and, as a start, you use the

11.3. YODA-compliant data analysis projects 140

https://gist.github.com/netj/8836201
https://help.github.com/en/github/writing-on-github/creating-gists#about-gists

The DataLad Handbook, Release 0.12.0+519.g04985082

cfg_yoda procedure to help you structure the dataset124:

inside of DataLad-101
$ datalad create -c yoda --dataset . midterm_project
[INFO] Creating a new annex repo at /home/me/dl-101/DataLad-101/midterm_project
[INFO] Running procedure cfg_yoda
[INFO] == Command start (output follows) =====
[INFO] == Command exit (modification check follows) =====
add(ok): midterm_project (file)
add(ok): .gitmodules (file)
save(ok): . (dataset)
create(ok): midterm_project (dataset)
action summary:
add (ok: 2)
create (ok: 1)
save (ok: 1)

The datalad subdatasets command can report on which subdatasets exist for DataLad-101.
This helps you verify that the command succeeded and the dataset was indeed linked as a
subdataset to DataLad-101:

$ datalad subdatasets
subdataset(ok): midterm_project (dataset)
subdataset(ok): recordings/longnow (dataset)
action summary:
subdataset (ok: 2)

Not only the longnow subdataset, but also the newly created midterm_project subdataset are
displayed – wonderful!

But back to the midterm project now. So far, you have created a pre-structured analysis dataset.
As a next step, you take care of installing and linking the raw dataset for your analysis ade-
quately to your midterm_project dataset by installing it as a subdataset. Make sure to install it
as a subdataset of midterm_project, and not DataLad-101!

$ cd midterm_project
we are in midterm_project, thus -d . points to the root of it.
$ datalad clone -d . https://github.com/datalad-handbook/iris_data.git input/
[INFO] Cloning dataset to <Dataset path=/home/me/dl-101/DataLad-101/midterm_project/input>
[INFO] Attempting to clone from https://github.com/datalad-handbook/iris_data.git to /
→˓home/me/dl-101/DataLad-101/midterm_project/input
[INFO] Start enumerating objects
[INFO] Start counting objects
[INFO] Start compressing objects
[INFO] Completed clone attempts for <Dataset path=/home/me/dl-101/DataLad-101/midterm_
→˓project/input>
[INFO] Remote origin not usable by git-annex; setting annex-ignore
install(ok): input (dataset)
add(ok): input (file)
add(ok): .gitmodules (file)

(continues on next page)

124 Note that you could have applied the YODA procedure not only right at creation of the dataset with -c yoda,
but also after creation with the datalad run-procedure command:

$ cd midterm_project
$ datalad run-procedure cfg_yoda

Both ways of applying the YODA procedure will lead to the same outcome.

11.3. YODA-compliant data analysis projects 141

The DataLad Handbook, Release 0.12.0+519.g04985082

(continued from previous page)

save(ok): . (dataset)
action summary:
add (ok: 2)
install (ok: 1)
save (ok: 1)

Note that we did not keep its original name, iris_data, but rather provided a path with a new
name, input, because this much more intuitively comprehensible.

After the input dataset is installed, the directory structure of DataLad-101 looks like this:

$ cd ../
$ tree -d
$ cd midterm_project
.

books
code
midterm_project

code
input

recordings
longnow

Long_Now__Conversations_at_The_Interval
Long_Now__Seminars_About_Long_term_Thinking

9 directories

Importantly, all of the subdatasets are linked to the higher-level datasets, and despite being
inside of DataLad-101, your midterm_project is an independent dataset, as is its input/ sub-
dataset:

 super-ds

sub-ds

sub-ds

DataLad-101/
books/
code/

recordings/

notes.txt

longnow/
Long_Now__Conv[...]/
Long_Now__Seminars[...]/

midterm_project/
code/
input/

sub-ds

11.3. YODA-compliant data analysis projects 142

The DataLad Handbook, Release 0.12.0+519.g04985082

YODA-compliant analysis scripts

Now that you have an input/ directory with data, and a code/ directory (created by the
YODA procedure) for your scripts, it is time to work on the script for your analysis. Within
midterm_project, the code/ directory is where you want to place your scripts. Finally you can
try out the Python API of DataLad!

But first, you plan your research question. You decide to do a classification analysis with a
k-nearest neighbors algorithm125. The iris dataset works well for such questions. Based on the
features of the flowers (sepal and petal width and length) you will try to predict what type of
flower (Setosa, Versicolor, or Virginica) a particular flower in the dataset is. You settle on two
objectives for your analysis:

1. Explore and plot the relationship between variables in the dataset and save the resulting
graphic as a first result.

2. Perform a k-nearest neighbor classification on a subset of the dataset to predict class
membership (flower type) of samples in a left-out test set. Your final result should be a
statistical summary of this prediction.

To compute the analysis you create the following Python script inside of code/:

$ cat << EOT > code/script.py

import pandas as pd
import seaborn as sns
import datalad.api as dl
from sklearn import model_selection
from sklearn.neighbors import KNeighborsClassifier
from sklearn.metrics import classification_report

data = "input/iris.csv"

make sure that the data are obtained (get will also install linked sub-ds!):
dl.get(data)

prepare the data as a pandas dataframe
df = pd.read_csv(data)
attributes = ["sepal_length", "sepal_width", "petal_length","petal_width", "class"]
df.columns = attributes

create a pairplot to plot pairwise relationships in the dataset
plot = sns.pairplot(df, hue='class', palette='muted')
plot.savefig('pairwise_relationships.png')

perform a K-nearest-neighbours classification with scikit-learn
Step 1: split data in test and training dataset (20:80)
array = df.values
X = array[:,0:4]
Y = array[:,4]
test_size = 0.20
seed = 7

(continues on next page)

125 If you want to know more about this algorithm, this blogpost126 gives an accessible overview. However, the
choice of analysis method for the handbook is rather arbitrary, and understanding the k-nearest neighbor algorithm
is by no means required for this section.

126 https://towardsdatascience.com/machine-learning-basics-with-the-k-nearest-neighbors-algorithm-6a6e71d01761

11.3. YODA-compliant data analysis projects 143

https://towardsdatascience.com/machine-learning-basics-with-the-k-nearest-neighbors-algorithm-6a6e71d01761

The DataLad Handbook, Release 0.12.0+519.g04985082

(continued from previous page)

X_train, X_test, Y_train, Y_test = model_selection.train_test_split(X, Y,
test_size=test_size,
random_state=seed)

Step 2: Fit the model and make predictions on the test dataset
knn = KNeighborsClassifier()
knn.fit(X_train, Y_train)
predictions = knn.predict(X_test)

Step 3: Save the classification report
report = classification_report(Y_test, predictions, output_dict=True)
df_report = pd.DataFrame(report).transpose().to_csv('prediction_report.csv')

EOT

This script will

• import DataLad’s functionality and expose it as dl.<COMMAND>

• make sure to install the linked subdataset and retrieve the data with datalad get (l. 12)
prior to reading it in, and

• save the resulting figure (l. 21) and .csv file (l. 40) into the root of midterm_project/.
Note how this helps to fulfil YODA principle 1 on modularity: Results are stored outside
of the pristine input subdataset.

• Note further how all paths (to input data and output files) are relative, such that the
midterm_project analysis is completely self-contained within the dataset, contributing to
fulfill the second YODA principle.

Let’s run a quick datalad status. . .

$ datalad status
untracked: code/script.py (file)

. . . and save the script to the subdataset’s history. As the script completes your analysis setup,
we tag the state of the dataset to refer to it easily at a later point with the --version-tag option
of datalad save.

$ datalad save -m "add script for kNN classification and plotting" --version-tag␣
→˓ready4analysis code/script.py
add(ok): code/script.py (file)
save(ok): . (dataset)
action summary:
add (ok: 1)
save (ok: 1)

Find out more

What is a tag?
tags are markers that you can attach to commits in your dataset history. They can have
any name, and can help you and others to identify certain commits or dataset states in
the history of a dataset. Let’s take a look at how the tag you just created looks like in your
history with git show. Note how we can use a tag just as easily as a commit shasum:

11.3. YODA-compliant data analysis projects 144

The DataLad Handbook, Release 0.12.0+519.g04985082

$ git show ready4analysis
commit 8147ae7c0a1b67b8dccbe61afdb39e41c3034e8a
Author: Elena Piscopia <elena@example.net>
Date: Mon Feb 17 08:51:01 2020 +0100

add script for kNN classification and plotting

diff --git a/code/script.py b/code/script.py
new file mode 100644
index 0000000..26058d3
--- /dev/null
+++ b/code/script.py
@@ -0,0 +1,41 @@
+
+import pandas as pd
+import seaborn as sns
+import datalad.api as dl
+from sklearn import model_selection
+from sklearn.neighbors import KNeighborsClassifier
+from sklearn.metrics import classification_report
+
+data = "input/iris.csv"
+
+# make sure that the data are obtained (get will also install linked sub-ds!):
+dl.get(data)
+
+# prepare the data as a pandas dataframe
+df = pd.read_csv(data)
+attributes = ["sepal_length", "sepal_width", "petal_length","petal_width", "class"]
+df.columns = attributes
+
+# create a pairplot to plot pairwise relationships in the dataset
+plot = sns.pairplot(df, hue='class', palette='muted')
+plot.savefig('pairwise_relationships.png')
+
+# perform a K-nearest-neighbours classification with scikit-learn
+# Step 1: split data in test and training dataset (20:80)
+array = df.values
+X = array[:,0:4]
+Y = array[:,4]
+test_size = 0.20
+seed = 7
+X_train, X_test, Y_train, Y_test = model_selection.train_test_split(X, Y,
+ test_size=test_
→˓size,
+ random_
→˓state=seed)
+# Step 2: Fit the model and make predictions on the test dataset
+knn = KNeighborsClassifier()
+knn.fit(X_train, Y_train)
+predictions = knn.predict(X_test)
+
+# Step 3: Save the classification report
+report = classification_report(Y_test, predictions, output_dict=True)
+df_report = pd.DataFrame(report).transpose().to_csv('prediction_report.csv')
+

11.3. YODA-compliant data analysis projects 145

The DataLad Handbook, Release 0.12.0+519.g04985082

This tag thus identifies the version state of the dataset in which this script was added.
Later we can use this tag to identify the point in time at which the analysis setup was
ready – much more intuitive than a 40-character shasum! This is handy in the context of
a datalad rerun for example:

$ datalad rerun --since ready4analysis

would rerun any run command in the history performed between tagging and the current
dataset state.

Finally, with your directory structure being modular and intuitive, the input data installed, the
script ready, and the dataset status clean, you can wrap the execution of the script (which is a
simple python3 code/script.py) in a datalad run command. Note that simply executing the
script would work as well – thanks to DataLad’s Python API. But using datalad run will capture
full provenance, and will make re-execution with datalad rerun easy.

Note: Note that you need to have the following Python packages installed to run the analy-
sis127:

• pandas118

• seaborn119

• sklearn120

The packages can be installed via pip. Check the footnote127 for code snippets to copy and paste.
However, if you do not want to install any Python packages, do not execute the remaining code
examples in this section – an upcoming section on datalad containers-run will allow you to
perform the analysis without changing with your Python software-setup.

$ datalad run -m "analyze iris data with classification analysis" \
--input "input/iris.csv" \
--output "prediction_report.csv" \
--output "pairwise_relationships.png" \
"python3 code/script.py"

[INFO] Making sure inputs are available (this may take some time)
[INFO] == Command start (output follows) =====
[INFO] == Command exit (modification check follows) =====
get(ok): input/iris.csv (file) [from web...]
add(ok): pairwise_relationships.png (file)
add(ok): prediction_report.csv (file)

(continues on next page)

127 It is recommended (but optional) to create a virtual environment128 and install the required Python packages
inside of it:

create and enter a new virtual environment (optional)
$ virtualenv --python=python3 ~/env/handbook
$. ~/env/handbook/bin/activate

install the Python packages from PyPi via pip
pip install seaborn, pandas, sklearn

128 https://docs.python.org/3/tutorial/venv.html
118 https://pandas.pydata.org/
119 https://seaborn.pydata.org/
120 https://scikit-learn.org/

11.3. YODA-compliant data analysis projects 146

https://pandas.pydata.org/
https://seaborn.pydata.org/
https://scikit-learn.org/
https://docs.python.org/3/tutorial/venv.html

The DataLad Handbook, Release 0.12.0+519.g04985082

(continued from previous page)

save(ok): . (dataset)
action summary:
add (ok: 2)
get (notneeded: 2, ok: 1)
save (notneeded: 1, ok: 1)

As the successful command summary indicates, your analysis seems to work! Two files were
created and saved to the dataset: pairwise_relationships.png and prediction_report.csv.
If you want, take a look and interpret your analysis. But what excites you even more than a
successful data science project on first try is that you achieved complete provenance capture:

• Every single file in this dataset is associated with an author and a time stamp for each
modification thanks to datalad save.

• The raw dataset knows where the data came from thanks to datalad clone and datalad
download-url.

• The subdataset is linked to the superdataset thanks to datalad clone -d.

• The datalad run command took care of linking the outputs of your analysis with the script
and the input data it was generated from, fulfilling the third YODA principle.

Let’s take a look at the history of the midterm_project analysis dataset:

$ git log --oneline
2ce757f [DATALAD RUNCMD] analyze iris data with classification analysis
8147ae7 add script for kNN classification and plotting
c70fe0a [DATALAD] Recorded changes
539b789 Apply YODA dataset setup
4db5c90 [DATALAD] new dataset

“Wow, this is so clean an intuitive!” you congratulate yourself. “And I think this was and will
be the fastest I have ever completed a midterm project!” But what is still missing is a human
readable description of your dataset. The YODA procedure kindly placed a README.md file into
the root of your dataset that you can use for this129.

Note: If you plan to share your own datasets with people that are unfamiliar with DataLad, it
may be helpful to give a short explanation of what a DataLad dataset is and what it can do. For
this, you can use a ready-made text block that the handbook provides. To find this textblock, go
to How can I help others get started with a shared dataset? (page 373).

with the >| redirection we are replacing existing contents in the file
$ cat << EOT >| README.md

Midterm YODA Data Analysis Project

Dataset structure

- All inputs (i.e. building blocks from other sources) are located in input/.

(continues on next page)

129 Note that all README.md files the YODA procedure created are version controlled by Git, not git-annex, thanks
to the configurations that YODA supplied. This makes it easy to change the README.md file. The previous section
detailed how the YODA procedure configured your dataset. If you want to re-read the full chapter on configurations
and run-procedures, start with section DIY configurations (page 108).

11.3. YODA-compliant data analysis projects 147

The DataLad Handbook, Release 0.12.0+519.g04985082

(continued from previous page)

- All custom code is located in code/.
- All results (i.e., generated files) are located in the root of the dataset:
- "prediction_report.csv" contains the main classification metrics.
- "output/pairwise_relationships.png" is a plot of the relations between features.

EOT

$ datalad status
modified: README.md (file)

$ datalad save -m "Provide project description" README.md
add(ok): README.md (file)
save(ok): . (dataset)
action summary:
add (ok: 1)
save (ok: 1)

Note that one feature of the YODA procedure was that it configured certain files (for example
everything inside of code/, and the README.md file in the root of the dataset) to be saved in Git
instead of git-annex. This was the reason why the README.md in the root of the dataset was
easily modifiable129.

Find out more

Saving contents with Git regardless of configuration with –to-git
The yoda procedure in midterm_project applied a different configuration within .
gitattributes than the text2git procedure did in DataLad-101. Within DataLad-101,
any text file is automatically stored in Git. This is not true in midterm_project: Only
the existing README.md files and anything within code/ are stored – everything else will
be annexed. That means that if you create any other file, even text files, inside of
midterm_project (but not in code/), it will be managed by git-annex and content-locked
after a datalad save – an inconvenience if it would be a file that is small enough to be
handled by Git.
Luckily, there is a handy shortcut to saving files in Git that does not require you to edit
configurations in .gitattributes: The --to-git option for datalad save.

$ datalad save -m "add sometextfile.txt" --to-git sometextfile.txt

After adding this short description to your README.md, your dataset now also contains sufficient
human-readable information to ensure that others can understand everything you did easily.
The only thing left to do is to hand in your assignment. According to the syllabus, this should
be done via GitHub.

Find out more

What is GitHub?
GitHub is a web based hosting service for Git repositories. Among many different other
useful perks it adds features that allow collaboration on Git repositories. GitLab121 is a
similar service with highly similar features, but its source code is free and open, whereas
GitHub is a subsidiary of Microsoft.
Web-hosting services like GitHub and GitLab integrate wonderfully with DataLad. They
are especially useful for making your dataset publicly available, if you have figured out

11.3. YODA-compliant data analysis projects 148

https://about.gitlab.com/

The DataLad Handbook, Release 0.12.0+519.g04985082

storage for your large files otherwise (as large content can not be hosted for free by
GitHub). You can make DataLad publish large file content to one location and after-
wards automatically push an update to GitHub, such that users can install directly from
GitHub/GitLab and seemingly also obtain large file content from GitHub. GitHub can also
resolve subdataset links to other GitHub repositories, which lets you navigate through
nested datasets in the web-interface.

The above screenshot shows the linkage between the analysis project you will create and
its subdataset. Clicking on the subdataset (highlighted) will take you to the iris dataset
the handbook provides, shown below.

121 https://about.gitlab.com/

Publishing the dataset to GitHub

Note: The upcoming part requires a GitHub account. If you do not have one you can either

• Create one now – it is fast, free, and you can get rid of it afterwards, if you want to.

• Or exchange the command create-sibling-github with create-sibling-gitlab if you
have a GitLab account instead of a GitHub account.

• Decide to not follow along.

For this, you need to

11.3. YODA-compliant data analysis projects 149

The DataLad Handbook, Release 0.12.0+519.g04985082

• create a repository for this dataset on GitHub,

• configure this GitHub repository to be a sibling of the midterm_project dataset,

• and publish your dataset to GitHub.

Luckily, DataLad can make all of this very easy with the datalad create-sibling-github
(datalad-create-sibling-github manual) command (or, for GitLab122, datalad
create-sibling-gitlab, datalad-create-sibling-gitlab manual).

The command takes a repository name and GitHub authentication credentials (either in the
command line call with options github-login <NAME> and github-passwd <PASSWORD>, with
an oauth token stored in the Git configuration130, or interactively). Based on the credentials
and the repository name, it will create a new, empty repository on GitHub, and configure this
repository as a sibling of the dataset:

$ datalad create-sibling-github -d . midtermproject
.: github(-) [https://github.com/adswa/midtermproject.git (git)]
'https://github.com/adswa/midtermproject.git' configured as sibling 'github' for <Dataset␣
→˓path=/home/me/dl-101/DataLad-101/midterm_project>

Verify that this worked by listing the siblings of the dataset:

$ datalad siblings
[WARNING] Failed to determine if github carries annex.
.: here(+) [git]
.: github(-) [https://github.com/adswa/midtermproject.git (git)]

Note for Git users

Creating a sibling on GitHub will create a new empty repository under the account that
you provide and set up a remote to this repository. Upon a datalad push to this sibling,
your datasets history will be pushed there.

On GitHub, you will see a new, empty repository with the name midtermproject. However, the
repository does not yet contain any of your dataset’s history or files. This requires publishing
the current state of the dataset to this sibling with the datalad push (datalad-push manual)
command.

Note: Publishing is one of the remaining big concepts that this handbook tries to convey.
However, publishing is a complex concept that encompasses a large proportion of the previ-
ous handbook content as a prerequisite. In order to be not too overwhelmingly detailed, the
upcoming sections will approach push from a “learning-by-doing” perspective: You will see a
first push to GitHub below, and the findoutmore at the end of this section will already give a
practical glimpse into the difference between annexed contents and contents stored in Git when
pushed to GitHub. The chapter Third party infrastructure (page 170) will extend on this, but the
section Overview: Publishing datasets (page 186) will finally combine and link all the previous
contents to give a comprehensive and detailed wrap up of the concept of publishing datasets.
In this section, you will also find a detailed overview on how push works and which options are
available. If you are impatient or need an overview on publishing, feel free to skip ahead. If you
have time to follow along, reading the next sections will get you towards a complete picture of

122 https://about.gitlab.com/
130 Such a token can be obtained, for example, using the command line GitHub interface (https://github.com/

sociomantic/git-hub) by running: git hub setup (if no 2FA is used).

11.3. YODA-compliant data analysis projects 150

https://about.gitlab.com/
https://github.com/sociomantic/git-hub
https://github.com/sociomantic/git-hub

The DataLad Handbook, Release 0.12.0+519.g04985082

publishing a bit more small-stepped and gently. For now, we will start with learning by doing,
and the fundamental basics of datalad push: The command will make the last saved state of
your dataset available (i.e., publish it) to the sibling you provide with the --to option.

$ datalad push --to github
[INFO] Start enumerating objects
[INFO] Start counting objects
[INFO] Start compressing objects
[INFO] Start writing objects
[INFO] Start enumerating objects
[INFO] Start counting objects
[INFO] Start compressing objects
[INFO] Start writing objects
publish(ok): . (dataset) [refs/heads/master->github:refs/heads/master [new branch]]
copy(ok): pairwise_relationships.png (file) [to github...]
copy(ok): prediction_report.csv (file) [to github...]
publish(ok): . (dataset) [refs/heads/git-annex->github:refs/heads/git-annex c1907f0..
→˓e3df704]

Thus, you have now published your dataset’s history to a public place for others to see and
clone. Below we will explore how this may look and feel for others. There is one important
detail first, though: By default, your tags will not be published. Thus, the tag ready4analysis
is not pushed to GitHub, and currently this version identifier is unavailable to anyone else but
you. The reason for this is that tags are viral – they can be removed locally, and old published
tags can cause confusion or unwanted changes. In order to publish a tag, an additional git
push131 with the --tags option is required:

$ git push github --tags

Yay! Consider your midterm project submitted! Others can now install your dataset and check
out your data science project – and even better: they can reproduce your data science project
easily from scratch!

Find out more

On the looks and feels of this published dataset
Now that you have created and published such a YODA-compliant dataset, you are under-
standably excited how this dataset must look and feel for others. Therefore, you decide
to install this dataset into a new location on your computer, just to get a feel for it.
Replace the url in the clone command below with the path to your own
midtermproject GitHub repository, or clone the “public” midterm_project reposi-

131 Note that this is a git push, not datalad push. Tags could be pushed upon a datalad push, though, if one
configures (what kind of) tags to be pushed. This would need to be done on a per-sibling basis in .git/config in
the remote.*.push configuration. If you had a sibling “github”, the following configuration would push all tags that
start with a v upon a datalad push --to github:

$ git config --local remote.github.push 'refs/tags/v*'

This configuration would result in the following entry in .git/config:

[remote "github"]
url = git@github.com/adswa/midtermproject.git
fetch = +refs/heads/*:refs/remotes/github/*
annex-ignore = true
push = refs/tags/v*

11.3. YODA-compliant data analysis projects 151

The DataLad Handbook, Release 0.12.0+519.g04985082

tory that is available via the Handbook’s GitHub organization at github.com/datalad-
handbook/midterm_project123:

$ cd ../../
$ datalad clone "https://github.com/adswa/midtermproject.git"
[INFO] Cloning dataset to <Dataset path=/home/me/dl-101/midtermproject>
[INFO] Attempting to clone from https://github.com/adswa/midtermproject.git to /
→˓home/me/dl-101/midtermproject
[INFO] Start enumerating objects
[INFO] Start counting objects
[INFO] Start compressing objects
[INFO] Start receiving objects
[INFO] Start resolving deltas
[INFO] Completed clone attempts for <Dataset path=/home/me/dl-101/midtermproject>
[INFO] Remote origin not usable by git-annex; setting annex-ignore
install(ok): /home/me/dl-101/midtermproject (dataset)

Let’s start with the subdataset, and see whether we can retrieve the input iris.csv file.
This should not be a problem, since its origin is recorded:

$ cd midtermproject
$ datalad get input/iris.csv
[INFO] Cloning dataset to <Dataset path=/home/me/dl-101/midtermproject/input>
[INFO] Attempting to clone from https://github.com/adswa/midtermproject.git/input␣
→˓to /home/me/dl-101/midtermproject/input
[INFO] Attempting to clone from https://github.com/adswa/midtermproject.git/input/.
→˓git to /home/me/dl-101/midtermproject/input
[INFO] Attempting to clone from https://github.com/datalad-handbook/iris_data.git␣
→˓to /home/me/dl-101/midtermproject/input
[INFO] Start enumerating objects
[INFO] Start counting objects
[INFO] Start compressing objects
[INFO] Completed clone attempts for <Dataset path=/home/me/dl-101/midtermproject/
→˓input>
[INFO] Remote origin not usable by git-annex; setting annex-ignore
install(ok): /home/me/dl-101/midtermproject/input (dataset) [Installed subdataset␣
→˓in order to get /home/me/dl-101/midtermproject/input/iris.csv]
get(ok): input/iris.csv (file) [from web...]
action summary:
get (ok: 1)
install (ok: 1)

Nice, this worked well. The output files, however, can not be easily retrieved:

11.3. YODA-compliant data analysis projects 152

https://github.com/datalad-handbook/midterm_project
https://github.com/datalad-handbook/midterm_project

The DataLad Handbook, Release 0.12.0+519.g04985082

$ datalad get prediction_report.csv pairwise_relationships.png
[WARNING] Running get resulted in stderr output: git-annex: get: 2 failed

[ERROR] not available; Try making some of these repositories available:;␣
→˓ 71c9c1e7-9ee6-49bc-aa28-ba650cd652c5 -- me@muninn:~/dl-101/DataLad-101/
→˓midterm_project; d1c7b155-731b-405e-b905-47542deff407 -- me@muninn:~/dl-
→˓101/DataLad-101/midterm_project; ef6c82fc-bcc3-46bc-aeb7-fdf93f00e9c9 --␣
→˓me@muninn:~/dl-101/DataLad-101/midterm_project; f59223ff-b7bb-4118-821d-
→˓351f952c00a3 -- me@muninn:~/dl-101/DataLad-101/midterm_project; ; (Note that␣
→˓these git remotes have annex-ignore set: origin) [get(/home/me/dl-101/
→˓midtermproject/pairwise_relationships.png)]
[ERROR] not available; Try making some of these repositories available:;␣
→˓ 71c9c1e7-9ee6-49bc-aa28-ba650cd652c5 -- me@muninn:~/dl-101/DataLad-101/
→˓midterm_project; d1c7b155-731b-405e-b905-47542deff407 -- me@muninn:~/dl-
→˓101/DataLad-101/midterm_project; ef6c82fc-bcc3-46bc-aeb7-fdf93f00e9c9 --␣
→˓me@muninn:~/dl-101/DataLad-101/midterm_project; f59223ff-b7bb-4118-821d-
→˓351f952c00a3 -- me@muninn:~/dl-101/DataLad-101/midterm_project; ; (Note that␣
→˓these git remotes have annex-ignore set: origin) [get(/home/me/dl-101/
→˓midtermproject/prediction_report.csv)]
get(error): pairwise_relationships.png (file) [not available; Try making some of␣
→˓these repositories available:; 71c9c1e7-9ee6-49bc-aa28-ba650cd652c5 --␣
→˓me@muninn:~/dl-101/DataLad-101/midterm_project; d1c7b155-731b-405e-b905-
→˓47542deff407 -- me@muninn:~/dl-101/DataLad-101/midterm_project; ef6c82fc-
→˓bcc3-46bc-aeb7-fdf93f00e9c9 -- me@muninn:~/dl-101/DataLad-101/midterm_project; ␣
→˓ f59223ff-b7bb-4118-821d-351f952c00a3 -- me@muninn:~/dl-101/DataLad-101/
→˓midterm_project; ; (Note that these git remotes have annex-ignore set: origin)]
get(error): prediction_report.csv (file) [not available; Try making some of these␣
→˓repositories available:; 71c9c1e7-9ee6-49bc-aa28-ba650cd652c5 --␣
→˓me@muninn:~/dl-101/DataLad-101/midterm_project; d1c7b155-731b-405e-b905-
→˓47542deff407 -- me@muninn:~/dl-101/DataLad-101/midterm_project; ef6c82fc-
→˓bcc3-46bc-aeb7-fdf93f00e9c9 -- me@muninn:~/dl-101/DataLad-101/midterm_project; ␣
→˓ f59223ff-b7bb-4118-821d-351f952c00a3 -- me@muninn:~/dl-101/DataLad-101/
→˓midterm_project; ; (Note that these git remotes have annex-ignore set: origin)]
action summary:
get (error: 2)

Why is that? This is the first detail of publishing datasets we will dive into. When
publishing dataset content to GitHub with datalad push, it is the dataset’s history, i.e.,
everything that is stored in Git, that is published. The file content of these particular
files, though, is managed by git-annex and not stored in Git, and thus only information
about the file name and location is known to Git. Because GitHub does not host large
data for free, annexed file content always needs to be deposited somewhere else (e.g., a
web server) to make it accessible via datalad get. The chapter Third party infrastructure
(page 170) will demonstrate how this can be done. For this dataset, it is not necessary
to make the outputs available, though: Because all provenance on their creation was
captured, we can simply recompute them with the datalad rerun command. If the tag
was published we can simply rerun any datalad run command since this tag:

$ datalad rerun --since ready4analysis

But without the published tag, we can rerun the analysis by specifying its shasum:

11.3. YODA-compliant data analysis projects 153

The DataLad Handbook, Release 0.12.0+519.g04985082

$ datalad rerun d715890b36b9a089eedbb0c929f52e182e889735
[INFO] Making sure inputs are available (this may take some time)
[WARNING] no content present; cannot unlock [unlock(/home/me/dl-101/midtermproject/
→˓pairwise_relationships.png)]
[WARNING] no content present; cannot unlock [unlock(/home/me/dl-101/midtermproject/
→˓prediction_report.csv)]
[INFO] == Command start (output follows) =====
[INFO] == Command exit (modification check follows) =====
remove(ok): pairwise_relationships.png
remove(ok): prediction_report.csv
add(ok): pairwise_relationships.png (file)
add(ok): prediction_report.csv (file)
action summary:
add (ok: 2)
get (notneeded: 3)
remove (ok: 2)
save (notneeded: 2)

Hooray, your analysis was reproduced! You happily note that rerunning your analysis
was incredibly easy – it would not even be necessary to have any knowledge about the
analysis at all to reproduce it! With this, you realize again how letting DataLad take care
of linking input, output, and code can make your life and others’ lives so much easier.
Applying the YODA principles to your data analysis was very beneficial indeed. Proud of
your midterm project you can not wait to use those principles the next time again.

123 https://github.com/datalad-handbook/midterm_project

Note for Git users

The datalad push uses git push, and git annex copy under the hood. Publication
targets need to either be configured remote Git repositories, or git-annex special remotes
(if they support data upload).

11.3. YODA-compliant data analysis projects 154

The DataLad Handbook, Release 0.12.0+519.g04985082

11.4 Summary

The YODA principles are a small set of guidelines that can make a huge difference towards
reproducibility, comprehensibility, and transparency in a data analysis project. By applying
them in your own midterm analysis project, you have experienced their immediate benefits.

You also noticed that these standards are not complex – quite the opposite, they are very intu-
itive. They structure essential components of a data analysis project – data, code, potentially
computational environments, and lastly also the results – in a modular and practical way, and
use basic principles and commands of DataLad you are already familiar with.

There are many advantages to this organization of contents.

• Having input data as independent dataset(s) that are not influenced (only consumed)
by an analysis allows for a modular reuse of pure data datasets, and does not conflate
the data of an analysis with the results or the code. You have experienced this with the
iris_data subdataset.

• Keeping code within an independent, version-controlled directory, but as a part of the
analysis dataset, makes sharing code easy and transparent, and helps to keep directories
neat and organized. Moreover, with the data as subdatasets, data and code can be auto-
matically shared together. By complying to this principle, you were able to submit both
code and data in a single superdataset.

• Keeping an analysis dataset fully self-contained with relative instead of absolute paths in
scripts is critical to ensure that an analysis reproduces easily on a different computer.

• DataLad’s Python API makes all of DataLad’s functionality available in Python, either as
standalone functions that are exposed via datalad.api, or as methods of the Dataset
class. This provides an alternative to the command line, but it also opens up the possibility
of performing DataLad commands directly inside of scripts.

• Including the computational environment into an analysis dataset encapsulates software
and software versions, and thus prevents re-computation failures (or sudden differences in
the results) once software is updated, and software conflicts arising on different machines
than the one the analysis was originally conducted on. You have not yet experienced how
to do this first-hand, but you will in a later section.

• Having all of these components as part of a DataLad dataset allows version controlling
all pieces within the analysis regardless of their size, and generates provenance for every-
thing, especially if you make use of the tools that DataLad provides. This way, anyone
can understand and even reproduce your analysis without much knowledge about your
project.

• The yoda procedure is a good starting point to build your next data analysis project up
on.

Now what can I do with it?

Using tools that DataLad provides you are able to make the most out of your data analysis
project. The YODA principles are a guide to accompany you on your path to reproducibility and
provenance-tracking.

What should have become clear in this section is that you are already equipped with enough
DataLad tools and knowledge that complying to these standards felt completely natural and

11.4. Summary 155

The DataLad Handbook, Release 0.12.0+519.g04985082

effortless in your midterm analysis project.

11.4. Summary 156

CHAPTER

TWELVE

ONE STEP FURTHER

12.1 More on Dataset nesting

You may have noticed how working in the subdataset felt as if you would be working in an inde-
pendent dataset – there was no information or influence at all from the top-level DataLad-101
superdataset, and you build up a completely stand-alone history:

$ git log --oneline
c5edf51 Provide project description
2ce757f [DATALAD RUNCMD] analyze iris data with classification analysis
8147ae7 add script for kNN classification and plotting
c70fe0a [DATALAD] Recorded changes
539b789 Apply YODA dataset setup
4db5c90 [DATALAD] new dataset

157

The DataLad Handbook, Release 0.12.0+519.g04985082

In principle, this is no news to you. From section Dataset nesting (page 46) and the YODA
principles you already know that nesting allows for a modular re-use of any other DataLad
dataset, and that this re-use is possible and simple precisely because all of the information is
kept within a (sub)dataset.

What is new now, however, is that you applied changes to the dataset. While you already
explored the looks and feels of the longnow subdataset in previous sections, you now modified
the contents of the midterm_project subdataset. How does this influence the superdataset, and
how does this look like in the superdataset’s history? You know from section Dataset nesting
(page 46) that the superdataset only stores the state of the subdataset. Upon creation of the
dataset, the very first, initial state of the subdataset was thus recorded in the superdataset. But
now, after you finished your project, your subdataset evolved. Let’s query the superdataset what
it thinks about this.

move into the superdataset
$ cd ../
$ datalad status
modified: midterm_project (dataset)

From the superdataset’s perspective, the subdataset appears as being “modified”. Note how it is
not individual files that show up as “modified”, but indeed the complete subdataset as a single
entity.

What this shows you is that the modifications of the subdataset you performed are not auto-
matically recorded to the superdataset. This makes sense – after all it should be up to you to
decide whether you want record something or not –, but it is worth repeating: If you modify a
subdataset, you will need to save this in the superdataset in order to have a clean superdataset
status.

This point in time in DataLad-101 is a convenient moment to dive a bit deeper into the functions
of the datalad status command. If you are interested in this, checkout the hidden section
below.

Find out more

More on datalad status
First of all, let’s start with a quick overview of the different content types and content
states various datalad status commands in the course of DataLad-101 have shown up
to this point:
You have seen the following content types:

• file, e.g., notes.txt: any file (or symlink that is a placeholder to an annexed file)
• directory, e.g., books: any directory that does not qualify for the dataset type
• symlink, e.g., the .jgp that was manually unlocked in section Input and output

(page 62): any symlink that is not used as a placeholder for an annexed file
• dataset, e.g., the midterm_project: any top-level dataset, or any subdataset that

is properly registered in the superdataset
And you have seen the following content states: modified and untracked. The section
Miscellaneous file system operations (page 193) will show you many instances of deleted
content state as well.
But beyond understanding the report of datalad status, there is also additional func-
tionality: datalad status can handle status reports for a whole hierarchy of datasets,
and it can report on a subset of the content across any number of datasets in this hierar-
chy by providing selected paths. This is useful as soon as datasets become more complex
and contain subdatasets with changing contents.

12.1. More on Dataset nesting 158

The DataLad Handbook, Release 0.12.0+519.g04985082

When performed without any arguments, datalad status will report the state of the
current dataset. However, you can specify a path to any sub- or superdataset with the
--dataset option.
In order to demonstrate this a bit better, we will make sure that not only the state of the
subdataset within the superdataset is modified, but also that the subdataset contains a
modification. For this, let’s add an empty text file into the midterm_project subdataset:

$ touch midterm_project/an_empty_file

If you are in the root of DataLad-101, but interested in the status within the subdataset,
simply provide a path (relative to your current location) to the command:

$ datalad status midterm_project
untracked: midterm_project/an_empty_file (file)

Alternatively, to achieve the same, specify the superdataset as the --dataset and provide
a path to the subdataset with a trailing path separator like this:

$ datalad status -d . midterm_project/
untracked: midterm_project/an_empty_file (file)

Note that both of these commands return only the untracked file and not not the
modified subdataset because we’re explicitly querying only the subdataset for its sta-
tus. If you however, as done outside of this hidden section, you want to know about
the subdataset record in the superdataset without causing a status query for the state
within the subdataset itself, you can also provide an explicit path to the dataset (without
a trailing path separator). This can be used to specify a specific subdataset in the case of
a dataset with many subdatasets:

$ datalad status -d . midterm_project
modified: midterm_project (dataset)

But if you are interested in both the state within the subdataset, and the state of the
subdataset within the superdataset, you can combine the two paths:

$ datalad status -d . midterm_project midterm_project/
modified: midterm_project (dataset)
untracked: midterm_project/an_empty_file (file)

Finally, if these subtle differences in the paths are not easy to memorize, the -r/
--recursive option will also report you both status aspects:

$ datalad status --recursive
modified: midterm_project (dataset)
untracked: midterm_project/an_empty_file (file)

This still was not all of the available functionality of the datalad status command. You
could for example adjust whether and how untracked dataset content should be reported
with the --untracked option, or get additional information from annexed content with
the --annex option. To get a complete overview on what you could do, check out the
technical documentation of datalad status here132.
Before we leave this hidden section, lets undo the modification of the subdataset by
removing the untracked file:

12.1. More on Dataset nesting 159

http://docs.datalad.org/en/latest/generated/man/datalad-status.html

The DataLad Handbook, Release 0.12.0+519.g04985082

$ rm midterm_project/an_empty_file
$ datalad status --recursive
modified: midterm_project (dataset)

132 http://docs.datalad.org/en/latest/generated/man/datalad-status.html

Let’s save the modification of the subdataset into the history of the superdataset. For this, to
avoid confusion, you can specify explicitly to which dataset you want to save a modification. -d
. specifies the current dataset, i.e., DataLad-101, as the dataset to save to:

$ datalad save -d . -m "finished my midterm project" midterm_project
add(ok): midterm_project (file)
save(ok): . (dataset)
action summary:
add (ok: 1)
save (ok: 1)

Find out more

More on how save can operate on nested datasets
In a superdataset with subdatasets, datalad save by default tries to figure out on its own
which dataset’s history of all available datasets a save should be written to. However, it
can reduce confusion or allow specific operations to be very explicit in the command call
and tell DataLad where to save what kind of modifications to.
If you want to save the current state of the subdataset into the superdataset (as necessary
here), start a save from the superdataset and have the -d/--dataset option point to its
root:

in the root of the superds
$ datalad save -d . -m "update subdataset"

If you are in the superdataset, and you want to save an unsaved modification in a sub-
dataset to the subdatasets history, let -d/--dataset point to the subdataset:

in the superds
$ datalad save -d path/to/subds -m "modified XY"

The recursive option allows you to save any content underneath the specified directory,
and recurse into any potential subdatasets:

$ datalad save . --recursive

Let’s check which subproject commit is now recorded in the superdataset:

$ git log -p -n 1
commit c6845ba51a1ce2c3f964ac6cd0f8082dc29d97f8
Author: Elena Piscopia <elena@example.net>
Date: Mon Feb 17 08:51:28 2020 +0100

finished my midterm project

diff --git a/midterm_project b/midterm_project
index 539b789..c5edf51 160000
--- a/midterm_project

(continues on next page)

12.1. More on Dataset nesting 160

The DataLad Handbook, Release 0.12.0+519.g04985082

(continued from previous page)

+++ b/midterm_project
@@ -1 +1 @@
-Subproject commit 539b789d64035b1b5e4dd02da6029f0608f48626
+Subproject commit c5edf51013817a61f0da5ed39c0130fde2b850bc

As you can see in the log entry, the subproject commit changed from the first commit hash in
the subdataset history to the most recent one. With this change, therefore, your superdataset
tracks the most recent version of the midterm_project dataset, and your dataset’s status is clean
again.

12.2 Computational reproducibility with software containers

Just after submitting your midterm data analysis project, you get together with your friends.
“I’m curious: So what kind of analyses did y’all carry out?” you ask. The variety of methods and
datasets the others used is huge, and one analysis interests you in particular. Later that day, you
decide to install this particular analysis dataset to learn more about the methods used in there.
However, when you re-run your friends analysis script, it throws an error. Hastily, you call her
– maybe she can quickly fix her script and resubmit the project with only minor delays. “I don’t
know what you mean”, you hear in return. “On my machine, everything works fine!”

On its own, DataLad datasets can contain almost anything that is relevant to ensure repro-
ducibility: Data, code, human-readable analysis descriptions (e.g., README.md files), provenance
on the origin of all files obtained from elsewhere, and machine-readable records that link gen-
erated outputs to the commands, scripts, and data they were created from.

This however may not be sufficient to ensure that an analysis reproduces (i.e., produces the
same or highly similar results), let alone works on a computer different than the one it was
initially composed on. This is because the analysis does not only depend on data and code, but
also the software environment that it is conducted in.

A lack of information about the operating system of the computer, the precise versions of in-
stalled software, or their configurations may make it impossible to replicate your analysis on
a different machine, or even on your own machine once a new software update is installed.
Therefore, it is important to communicate all details about the computational environment for
an analysis as thoroughly as possible. Luckily, DataLad provides an extension that can link
computational environments to datasets, the datalad containers133 extension145.

This section will give a quick overview on what containers are and demonstrate how
datalad-containers helps to capture full provenance of an analysis by linking containers to
datasets and analyses.

Containers

To put it simple, computational containers are cut-down virtual machines that allow you to
package all software libraries and their dependencies (all in the precise version your analysis
requires) into a bundle you can share with others. On your own and other’s machines, the
container constitutes a secluded software environment that

• contains the exact software environment that you specified, ready to run analyses in
133 http://docs.datalad.org/projects/container/en/latest/
145 To read more about DataLad’s extensions, see section DataLad’s extensions (page 248).

12.2. Computational reproducibility with software containers 161

http://docs.datalad.org/projects/container/en/latest/

The DataLad Handbook, Release 0.12.0+519.g04985082

• does not effect any software outside of the container

Unlike virtual machines, software containers do not have their own operating system. Instead,
they use basic services of the underlying operating system of the computer they run on (in
a read-only fashion). This makes them lightweight and portable. By sharing software envi-
ronments with containers, others (and also yourself) have easy access to the correct software
without the need to modify the software environment of the machine the container runs on.
Thus, containers are ideal to encapsulate the software environment and share it together with
the analysis code and data to ensure computational reproducibility of your analyses, or to cre-
ate a suitable software environment on a computer that you do not have permissions to deploy
software on.

There are a number of different tools to create and use containers, with Docker134 being one
of the most well-known of them. While being a powerful tool, it is only rarely used on high
performance computing (HPC) infrastructure146. An alternative is Singularity135. Both of these
tools share core terminology:

Recipe A text file template that lists all required components of the computational environ-
ment. It is made by a human user.

Image This is built from the recipe file. It is a static filesystem inside a file, populated with the
software specified in the recipe, and some initial configuration.

Container A running instance of an Image that you can actually use for your computations. If
you want to create and run your own software container, you start by writing a recipe file
and build an Image from it. Alternatively, you can can also pull an Image built from a
publicly shared recipe from the Hub of the tool you are using.

Hub A storage resource to share and consume images. There is Singularity-Hub136 and Docker-
Hub137. Both are optional, additional services not required to use software containers, but
a convenient way to share recipes and have imaged built from them by a service (instead
of building them manually and locally).

Note that as of now, the datalad-containers extension supports Singularity and Docker images.
Singularity furthermore is compatible with Docker – you can use Docker Images as a basis
for Singularity Images, or run Docker Images with Singularity (even without having Docker
installed).

Note: In order to use Singularity containers (and thus datalad containers), you have to
install138 the software singularity.

Using datalad containers

One core feature of the datalad containers extension is that it registers computational con-
tainers to a dataset. This is done with the datalad containers-add command. Once a container

134 https://www.docker.com/
146 The main reason why Docker is not deployed on HPC systems is because it grants users “superuser privileges147”.

On multi-user systems such as HPC, users should not have those privileges, as it would enable them to temper with
other’s or shared data and resources, posing a severe security threat.

147 https://en.wikipedia.org/wiki/Superuser
135 https://sylabs.io/docs/
136 https://singularity-hub.org/
137 https://hub.docker.com/
138 https://singularity.lbl.gov/docs-installation

12.2. Computational reproducibility with software containers 162

https://www.docker.com/
https://sylabs.io/docs/
https://singularity-hub.org/
https://hub.docker.com/
https://hub.docker.com/
https://singularity.lbl.gov/docs-installation
https://en.wikipedia.org/wiki/Superuser

The DataLad Handbook, Release 0.12.0+519.g04985082

is registered, arbitrary commands can be executed inside of it, i.e., in the precise software envi-
ronment the container encapsulates. All it needs for this it to swap the datalad run command
introduced in section Keeping track (page 52) with the datalad containers-run command.

Let’s see this in action for the midterm_analysis dataset by rerunning the analysis you did for
the midterm project within a Singularity container. We start by registering a container to the
dataset. For this, we will pull an Image from Singularity hub. This Image was made for the
handbook, and it contains the relevant Python setup for the analysis. Its recipe lives in the
handbook’s resources repository139, and the Image is built from the recipe via Singularity hub.
If you’re curious how to create a Singularity Image, the hidden section below has some pointers:

Find out more

How to make a Singularity Image
Singularity containers are build from Image files, often called “recipes”, that hold a “def-
inition” of the software container and its contents and components. The singularity doc-
umentation140 has its own tutorial on how to build such Images from scratch. An alter-
native to writing the Image file by hand is to use Neurodocker141. This command-line
program can help you generate custom Singularity recipes (and also Dockerfiles, from
which Docker Images are build). A wonderful tutorial on how to use Neurodocker is this
introduction142 by Michael Notter.
Once a recipe exists, the command

sudo singularity build <NAME> <RECIPE>

will build a container (called <NAME>) from the recipe. Note that this command requires
root privileges (“sudo”). You can build the container on any machine, though, not nec-
essarily the one that is later supposed to actually run the analysis, e.g., your own laptop
versus a compute cluster. Alternatively, Singularity Hub143 integrates with Github and
builds containers from Images pushed to repositories on Github. The docs144 give you a
set of instructions on how to do this.

140 https://sylabs.io/guides/3.4/user-guide/build_a_container.html
141 https://github.com/kaczmarj/neurodocker#singularity
142 https://miykael.github.io/nipype_tutorial/notebooks/introduction_neurodocker.html
143 https://singularity-hub.org/
144 https://singularityhub.github.io/singularityhub-docs/

The datalad containers-add command takes an arbitrary name to give to the container, and a
path or url to a container Image:

we are in the midterm_project subdataset
$ datalad containers-add midterm-software --url shub://adswa/resources:1
add(ok): .datalad/config (file)
save(ok): . (dataset)
containers_add(ok): /home/me/dl-101/DataLad-101/midterm_project/.datalad/environments/
→˓midterm-software/image (file)
action summary:
add (ok: 1)
containers_add (ok: 1)
save (ok: 1)

139 https://github.com/datalad-handbook/resources

12.2. Computational reproducibility with software containers 163

https://github.com/datalad-handbook/resources
https://sylabs.io/guides/3.4/user-guide/build_a_container.html
https://sylabs.io/guides/3.4/user-guide/build_a_container.html
https://github.com/kaczmarj/neurodocker#singularity
https://miykael.github.io/nipype_tutorial/notebooks/introduction_neurodocker.html
https://miykael.github.io/nipype_tutorial/notebooks/introduction_neurodocker.html
https://singularity-hub.org/
https://singularityhub.github.io/singularityhub-docs/

The DataLad Handbook, Release 0.12.0+519.g04985082

Find out more

How do I add an Image from Dockerhub, or a local container?
Should the Image you want to use lie on Dockerhub, specify the --url option prefixed
with docker:// instead of shub:// like this:

datalad containers-add midterm-software --url docker://adswa/resources:1

If you want to add a container that exists locally, specify the path to it like this:

datalad containers-add midterm-software --url path/to/container

This command downloaded the container from Singularity Hub, added it to the
midterm_project dataset, and recorded basic information on the container under its name
“midterm-software” in the dataset’s configuration at .datalad/config.

Find out more

What has been added to .datalad/config?

$ cat .datalad/config
[datalad "dataset"]

id = 3a233abc-515a-11ea-a727-6533dd7bb2c6
[datalad "containers.midterm-software"]

updateurl = shub://adswa/resources:1
image = .datalad/environments/midterm-software/image
cmdexec = singularity exec {img} {cmd}

This recorded the Image’s origin on Singularity-Hub, the location of the Image in the
dataset under .datalad/environments/<NAME>/image, and it specifies the way in which
the container should be used: The line

cmdexec = singularity exec {img} {cmd}

can be read as: “If this container is used, take the cmd (what you wrap in a datalad
containers-run command) and plug it into a singularity exec command. The mode of
calling Singularity, namely exec, means that the command will be executed inside of the
container.
Note that the Image is saved under .datalad/environments and the configuration is done
in .datalad/config – as these files are version controlled and shared with together with
a dataset, your software container and the information where it can be re-obtained from
are linked to your dataset.
This is how the containers-add command is recorded in your history:

12.2. Computational reproducibility with software containers 164

The DataLad Handbook, Release 0.12.0+519.g04985082

$ git log -n 1 -p
commit 48c34a2f551b67edf4f65573ac6f85ca8776b2c2
Author: Elena Piscopia <elena@example.net>
Date: Mon Feb 17 08:52:16 2020 +0100

[DATALAD] Configure containerized environment 'midterm-software'

diff --git a/.datalad/config b/.datalad/config
index 18fe28f..dc29cf7 100644
--- a/.datalad/config
+++ b/.datalad/config
@@ -1,2 +1,6 @@
[datalad "dataset"]

id = 3a233abc-515a-11ea-a727-6533dd7bb2c6
+[datalad "containers.midterm-software"]
+ updateurl = shub://adswa/resources:1
+ image = .datalad/environments/midterm-software/image
+ cmdexec = singularity exec {img} {cmd}
diff --git a/.datalad/environments/midterm-software/image b/.datalad/environments/
→˓midterm-software/image
new file mode 120000
index 0000000..800282a
--- /dev/null
+++ b/.datalad/environments/midterm-software/image
@@ -0,0 +1 @@
+../../../.git/annex/objects/zJ/8f/MD5E-s232214559--
→˓49dcb6ac1a5787636c9897c4d4df7e10/MD5E-s232214559--49dcb6ac1a5787636c9897c4d4df7e10
\ No newline at end of file

Now that we have a complete computational environment linked to the midterm_project
dataset, we can execute commands in this environment. Let us for example try to repeat the
datalad run command from the section YODA-compliant data analysis projects (page 137) as a
datalad containers-run command.

The previous run command looked like this:

$ datalad run -m "analyze iris data with classification analysis" \
--input "input/iris.csv" \
--output "prediction_report.csv" \
--output "pairwise_relationships.png" \
"python3 code/script.py"

How would it look like as a containers-run command?

$ datalad containers-run -m "rerun analysis in container" \
--container-name midterm-software \
--input "input/iris.csv" \
--output "prediction_report.csv" \
--output "pairwise_relationships.png" \
"python3 code/script.py"

[INFO] Making sure inputs are available (this may take some time)
[INFO] == Command start (output follows) =====
[INFO] == Command exit (modification check follows) =====
unlock(ok): pairwise_relationships.png (file)
unlock(ok): prediction_report.csv (file)

(continues on next page)

12.2. Computational reproducibility with software containers 165

The DataLad Handbook, Release 0.12.0+519.g04985082

(continued from previous page)

add(ok): pairwise_relationships.png (file)
add(ok): prediction_report.csv (file)
save(ok): . (dataset)
action summary:
add (ok: 2)
get (notneeded: 4)
save (notneeded: 1, ok: 1)
unlock (ok: 2)

Almost exactly like a datalad run command! The only additional parameter is container-name.
At this point, though, the --container-name flag is even optional because there is only a single
container registered to the dataset. But if your dataset contains more than one container you
will need to specify the name of the container you want to use in your command. The complete
command’s structure looks like this:

$ datalad containers-run --name <containername> [-m ...] [--input ...] [--output ...]
→˓<COMMAND>

Find out more

How can I list available containers or remove them?
The command datalad containers-list will list all containers in the current dataset:

$ datalad containers-list
midterm-software -> .datalad/environments/midterm-software/image

The command datalad containers-remove will remove a container from the dataset, if
there exists a container with name given to the command. Note that this will remove not
only the Image from the dataset, but also the configuration for it in .datalad/config.

Here is how the history entry looks like:

$ git log -p -n 1
commit c7a17ea4eab9d1f338c1031a6e160f6ce3e275e9
Author: Elena Piscopia <elena@example.net>
Date: Mon Feb 17 08:52:22 2020 +0100

[DATALAD RUNCMD] rerun analysis in container

=== Do not change lines below ===
{
"chain": [],
"cmd": "singularity exec .datalad/environments/midterm-software/image python3 code/

→˓script.py",
"dsid": "3a233abc-515a-11ea-a727-6533dd7bb2c6",
"exit": 0,
"extra_inputs": [
".datalad/environments/midterm-software/image"
],
"inputs": [
"input/iris.csv"
],
"outputs": [
"prediction_report.csv",
"pairwise_relationships.png"

(continues on next page)

12.2. Computational reproducibility with software containers 166

The DataLad Handbook, Release 0.12.0+519.g04985082

(continued from previous page)

],
"pwd": "."

}
^^^ Do not change lines above ^^^

diff --git a/pairwise_relationships.png b/pairwise_relationships.png
index 7a8e02e..6e06b18 120000
--- a/pairwise_relationships.png
+++ b/pairwise_relationships.png
@@ -1 +1 @@
-.git/annex/objects/3p/63/MD5E-s174822--9c3ff04d3e50f86034651c2df2dd720f.png/MD5E-s174822-
→˓-9c3ff04d3e50f86034651c2df2dd720f.png
\ No newline at end of file
+.git/annex/objects/xZ/pk/MD5E-s175447--1f7f416d7c317c1f6208a940aa50c700.png/MD5E-s175447-
→˓-1f7f416d7c317c1f6208a940aa50c700.png
\ No newline at end of file
diff --git a/prediction_report.csv b/prediction_report.csv
index 42d194b..b46a2d5 120000
--- a/prediction_report.csv
+++ b/prediction_report.csv
@@ -1 +1 @@
-.git/annex/objects/8q/6M/MD5E-s345--a88cab39b1a5ec59ace322225cc88bc9.csv/MD5E-s345--
→˓a88cab39b1a5ec59ace322225cc88bc9.csv
\ No newline at end of file
+.git/annex/objects/VF/27/MD5E-s347--7d984f53676358222aa7aa55980f205b.csv/MD5E-s347--
→˓7d984f53676358222aa7aa55980f205b.csv
\ No newline at end of file

If you would rerun this commit, it would be re-executed in the software container registered
to the dataset. If you would share the dataset with a friend and they would rerun this commit,
the Image would first be obtained from its registered url, and thus your friend can obtain the
correct execution environment automatically.

Note that because this new containers-run command modified the midterm_project subdi-
rectory, we need to also save the most recent state of the subdataset to the superdataset
DataLad-101.

$ cd ../
$ datalad status
modified: midterm_project (dataset)

$ datalad save -d . -m "add container and execute analysis within container" midterm_
→˓project
add(ok): midterm_project (file)
save(ok): . (dataset)
action summary:
add (ok: 1)
save (ok: 1)

Software containers, the datalad-containers extension, and DataLad thus work well together
to make your analysis completely reproducible – by not only linking code, data, and outputs,
but also the software environment of an analysis. And this does not only benefit your future
self, but also whomever you share your dataset with, as the information about the container is
shared together with the dataset. How cool is that?

12.2. Computational reproducibility with software containers 167

The DataLad Handbook, Release 0.12.0+519.g04985082

If you are interested in more, you can read about another example of datalad containers-run
in the usecase An automatically and computationally reproducible neuroimaging analysis from
scratch (page 307).

12.3 Summary

The last two sections have first of all extended your knowledge on dataset nesting:

• When subdatasets are created or installed, they are registered to the superdataset in their
current version state (as identified by their most recent commit’s hash). For a freshly
created subdatasets, the most recent commit is at the same time its first commit.

• Once the subdataset evolves, the superdataset recognizes this as a modification of the
subdatasets version state. If you want to record this, you need to save it in the super-
dataset:

$ datalad save -m "a short summary of changes in subds" <path to subds>

But more than nesting concepts, they have also extended your knowledge on reproducible anal-
yses with datalad run and you have experienced for yourself why and how software containers
can go hand-in-hand with DataLad:

• A software container encapsulates a complete software environment, independent from
the environment of the computer it runs on. This allows you to create or use secluded soft-
ware and also share it together with your analysis to ensure computational reproducibility.
The DataLad extension datalad containers148 can make this possible.

• The command datalad containers-add registers an Image from a path or url to your
dataset.

• If you use datalad containers-run instead of datalad run, you can reproducibly execute
a command of your choice within the software environment.

• A datalad rerun of a commit produced with datalad containers-run will re-execute the
command in the same software environment.

Now what can I do with it?

For one, you will not be surprised if you ever see a subdataset being shown as modified by
datalad status: You now know that if a subdataset evolves, it’s most recent state needs to be
explicitly saved to the superdatasets history.

On a different matter, you are now able to capture and share analysis provenance that includes
the relevant software environment. This does not only make your analyses projects automat-
ically reproducible, but automatically computationally reproducible - you can make sure that
your analyses runs on any computer with Singularity, regardless of the software environment
on this computer. Even if you are unsure how you can wrap up an environment into a software
container Image at this point, you could make use of hundreds of publicly available Images on
Singularity-Hub149 and Docker-Hub150.

148 http://docs.datalad.org/projects/container/en/latest/
149 https://singularity-hub.org/
150 https://hub.docker.com/

12.3. Summary 168

http://docs.datalad.org/projects/container/en/latest/
https://singularity-hub.org/
https://hub.docker.com/

The DataLad Handbook, Release 0.12.0+519.g04985082

With this, you have also gotten a first glimpse into an extension of DataLad: A Python module
you can install with Python package managers such as pip that extends DataLad’s functionality.

12.3. Summary 169

CHAPTER

THIRTEEN

THIRD PARTY INFRASTRUCTURE

13.1 Beyond shared infrastructure

Note: If you plan to share your own datasets with people that are unfamiliar with DataLad, it
may be helpful to give a short explanation of what a DataLad dataset is and what it can do. For
this, you can use a ready-made text block that the handbook provides. To find this textblock, go
to How can I help others get started with a shared dataset? (page 373).

From the sections Looking without touching (page 83) and YODA-compliant data analysis projects
(page 137) you already know about two common setups for sharing datasets:

170

The DataLad Handbook, Release 0.12.0+519.g04985082

Users on a common, shared computational infrastructure such as an SSH server can share
datasets via simple installations with paths.

Without access to the same computer, it is possible to push datasets to GitHub or GitLab to
publish them. You have already done this when you shared your midterm_project dataset via
GitHub. However, this section demonstrated that the files stored in git-annex (such as the results
of your analysis, pairwise_comparisons.png and prediction_report.csv) are not published to
GitHub: There was meta data about their file availability, but a datalad get command on these
files failed, because storing (large) annexed content is currently not supported by GitHub178.
In the case of the midterm_project, this was not a problem: The computations that you ran
were captured with datalad run, and others can just recompute your results instead of datalad
getting them.

However, not always do two or more parties share the same server, have access to the same
systems, or share something that can be recomputed quickly, but need to actually share datasets
with data, including the annexed contents.

Leveraging third party infrastructure

Let’s say you’d like to share your complete DataLad-101 dataset with a friend overseas. After
all you know about DataLad, you’d like to let more people know about its capabilities. You and
your friend, however, do not have access to the same computational infrastructure, and there
are also many annexed files, e.g., the PDFs in your dataset, that you’d like your friend to have
but that can’t be simply computed or automatically obtained from web sources.

In these cases, the two previous approaches to share data do not suffice. What you would like
to do is to provide your friend with a GitHub URL to install a dataset from and successfully run
datalad get, just as with the many publicly available DataLad datasets such as the longnow
podcasts.

To share all dataset contents with your friend, you need to configure an external resource that
stores your annexed data contents and that can be accessed by the person you want to share
your data with. Such a resource can be a private web server, but also a third party services
cloud storage such as Dropbox151, Google152, Amazon S3 buckets153, Box.com154, Figshare155,
owncloud156, sciebo157, or many more. The key to achieve this lies within git-annex.

In order to use third party services for file storage, you need to configure the service of your
choice and publish the annexed contents to it. Afterwards, the published dataset (e.g., via
GitHub or GitLab) stores the information about where to obtain annexed file contents from such
that datalad get works.

178 GitLab, on the other hand, provides a git-annex configuration. It is disabled by default, and to enable it you
would need to have administrative access to the server and client side of your GitLab instance. Find out more
here179. Alternatively, GitHub can integrate with GitLFS180, a non-free, centralized service that allows to store large
file contents. The last paragraph in this section shows an example on how to use their free trial version.

179 https://docs.gitlab.com/ee/administration/git_annex.html
180 https://git-lfs.github.com/
151 https://dropbox.com
152 https://google.com
153 https://aws.amazon.com/s3/?nc1=h_ls
154 https://www.box.com/en-gb/home
155 https://figshare.com/
156 https://owncloud.org/
157 https://sciebo.de/

13.1. Beyond shared infrastructure 171

https://dropbox.com
https://google.com
https://aws.amazon.com/s3/?nc1=h_ls
https://www.box.com/en-gb/home
https://figshare.com/
https://owncloud.org/
https://sciebo.de/
https://docs.gitlab.com/ee/administration/git_annex.html
https://git-lfs.github.com/

The DataLad Handbook, Release 0.12.0+519.g04985082

This tutorial showcases how this can be done, and shows the basics of how datasets can be
shared via a third party infrastructure.

Note: A much easier alternative using another third party infrastructure is introduced in the
next section, Dataset hosting on GIN (page 179), using the free G-Node infrastructure. If you
prefer this as an easier start, feel free to skip ahead.

From your perspective (as someone who wants to share data), you will need to

• (potentially) install/setup the relevant special-remote,

• find a place that large file content can be stored in & set up a publication dependency on
this location,

• publish your dataset

This gives you the freedom to decide where your data lives and who can have access to it. Once
this set up is complete, updating and accessing a published dataset and its data is almost as
easy as if it would lie on your own machine.

From the perspective of your friend (as someone who wants to obtain a dataset), they will need
to

• (potentially) install the relevant special-remote and

• perform the standard datalad clone and datalad get commands as necessary.

Thus, from a collaborator’s perspective, with the exception of potentially installing/setting up
the relevant special-remote, obtaining your dataset and its data is as easy as with any public
DataLad dataset. While you have to invest some setup effort in the beginning, once this is done,
the workflows of yours and others are the same that you are already very familiar with.

Setting up 3rd party services to host your data

Note: The tutorial below is functional, but there is work towards a wrapper function to ease
creating and working with rclone-based special remotes: https://github.com/datalad/datalad/
pull/4162. Once finished, this section will be updated accordingly.

In this paragraph you will see how a third party service can be configured to host your data.
Note that the exact procedures are different from service to service – this is inconvenient, but
inevitable given the differences between the various third party infrastructures. The general
workflow, however, is the same:

1. Initialize the appropriate Git-annex special-remote (different from service to service).

2. Push annexed file content to the third-party service to use it as a storage provider

3. Share the dataset (repository) via GitHub/GitLab/. . . for others to install from

If the above steps are implemented, others can install or clone your shared dataset, and get
or pull large file content from the remote, third party storage.

13.1. Beyond shared infrastructure 172

https://github.com/datalad/datalad/pull/4162
https://github.com/datalad/datalad/pull/4162

The DataLad Handbook, Release 0.12.0+519.g04985082

Find out more

What is a special remote
A special-remote is an extension to Git’s concept of remotes, and can enable git-annex to
transfer data from and possibly to places that are not Git repositories (e.g., cloud services
or external machines such as an HPC system). For example, s3 special remote uploads
and downloads content to AWS S3, web special remote downloads files from the web,
datalad-archive extracts files from the annexed archives, etc. Don’t envision a special-
remote as merely a physical place or location – a special-remote is a protocol that defines
the underlying transport of your files to and/or from a specific location.

As an example, let’s walk through all necessary steps to publish DataLad-101 to Dropbox. If
you instead are interested in learning how to set up a public Amazon S3 bucket158, there is a
single-page, step-by-step walk-through in the documentation of git-annex159 that shows how
you can create an S3 special remote and share data with anyone who gets a clone of your
dataset, without them needing Amazon AWS credentials. Likewise, the documentation pro-
vides step-by-step walk-throughs for many other services, such as Google Cloud Storage160,
Box.com161, Amazon Glacier162, OwnCloud163, and many more. Here is the complete list: git-
annex.branchable.com/special_remotes/164.

For Dropbox, the relevant special-remote to configures is rclone165. It is a command
line program to sync files and directories to and from a large number of commercial
providers181(Amazon Cloud Drive, Microsoft One Drive, . . .). By enabling it as a special re-
mote, git-annex gets the ability to do the same, and can thus take care of publishing large file
content to such sources conveniently under the hood.

• The first step is to install166 rclone on your computer. The installation instructions are
straightforward and the installation is quick if you are on a Unix-based system (macOS or
any Linux distribution).

• Afterwards, run rclone config from the command line to configure rclone to work with
Dropbox. Running this command will a guide you with an interactive prompt through
a ~2 minute configuration of the remote (here we will name the remote “dropbox-for-
friends” – the name will be used to refer to it later during the configuration of the dataset
we want to publish). The interactive dialog is outlined below, and all parts that require
user input are highlighted.

$ rclone config
2019/09/06 13:43:58 NOTICE: Config file "/home/me/.config/rclone/rclone.conf" not found -
→˓ using defaults
No remotes found - make a new one

(continues on next page)

158 https://aws.amazon.com/s3/?nc1=h_ls
159 https://git-annex.branchable.com/tips/public_Amazon_S3_remote/
160 https://git-annex.branchable.com/tips/using_Google_Cloud_Storage/
161 https://git-annex.branchable.com/tips/using_box.com_as_a_special_remote/
162 https://git-annex.branchable.com/tips/using_Amazon_Glacier/
163 https://git-annex.branchable.com/tips/owncloudannex/
164 https://git-annex.branchable.com/special_remotes/
165 https://github.com/DanielDent/git-annex-remote-rclone
181 rclone is a useful special-remote for this example, because you can not only use it for Dropbox, but also for

many other third-party hosting services. For a complete overview of which third-party services are available and
which special-remote they need, please see this list182.

182 http://git-annex.branchable.com/special_remotes/
166 https://rclone.org/install/

13.1. Beyond shared infrastructure 173

https://aws.amazon.com/s3/?nc1=h_ls
https://git-annex.branchable.com/tips/public_Amazon_S3_remote/
https://git-annex.branchable.com/tips/using_Google_Cloud_Storage/
https://git-annex.branchable.com/tips/using_box.com_as_a_special_remote/
https://git-annex.branchable.com/tips/using_Amazon_Glacier/
https://git-annex.branchable.com/tips/owncloudannex/
https://git-annex.branchable.com/special_remotes/
https://git-annex.branchable.com/special_remotes/
https://github.com/DanielDent/git-annex-remote-rclone
https://rclone.org/install/
http://git-annex.branchable.com/special_remotes/

The DataLad Handbook, Release 0.12.0+519.g04985082

(continued from previous page)

n) New remote
s) Set configuration password
q) Quit config
n/s/q> n
name> dropbox-for-friends
Type of storage to configure.
Enter a string value. Press Enter for the default ("").
Choose a number from below, or type in your own value
1 / 1Fichier
\ "fichier"

2 / Alias for an existing remote
\ "alias"

[...]
8 / Dropbox
\ "dropbox"

[...]
31 / premiumize.me

\ "premiumizeme"
Storage> dropbox
** See help for dropbox backend at: https://rclone.org/dropbox/ **

Dropbox App Client Id
Leave blank normally.
Enter a string value. Press Enter for the default ("").
client_id>
Dropbox App Client Secret
Leave blank normally.
Enter a string value. Press Enter for the default ("").
client_secret>
Edit advanced config? (y/n)
y) Yes
n) No
y/n> n
If your browser doesn't open automatically go to the following link: http://127.0.0.
→˓1:53682/auth
Log in and authorize rclone for access
Waiting for code...

• At this point, this will open a browser and ask you to authorize rclone to manage your
Dropbox, or any other third-party service you have selected in the interactive prompt.
Accepting will bring you back into the terminal to the final configuration prompts:

Got code

[dropbox-for-friends]
type = dropbox
token = {"access_token":"meVHyc[...]",

"token_type":"bearer",
"expiry":"0001-01-01T00:00:00Z"}

y) Yes this is OK
e) Edit this remote
d) Delete this remote
y/e/d> y
Current remotes:

(continues on next page)

13.1. Beyond shared infrastructure 174

The DataLad Handbook, Release 0.12.0+519.g04985082

(continued from previous page)

Name Type
==== ====
dropbox-for-friends dropbox

e) Edit existing remote
n) New remote
d) Delete remote
r) Rename remote
c) Copy remote
s) Set configuration password
q) Quit config
e/n/d/r/c/s/q> q

• Once this is done, git clone the git-annex-remote-rclone167 repository to your machine
(do not clone it into DataLad-101 but somewhere else on your computer):

$ git clone https://github.com/DanielDent/git-annex-remote-rclone.git

This is a wrapper around rclone168 that makes any destination supported by rclone us-
able with git-annex. If you are on a recent version of Debian or Ubuntu (or enable Neu-
roDebian169 repository), you alternatively can get it more conveniently via your package
manager with sudo apt-get install git-annex-remote-rclone.

• Copy the path to this repository into your $PATH variable. If the clone is in /home/
user-bob/repos, the command would look like this183:

$ export PATH="/home/user-bob/repos/git-annex-remote-rclone:$PATH"

• Finally, in the dataset you want to share, run the git annex initremote command. Give
the remote a name (it is dropbox-for-friends here), and specify the name of the remote
you configured with rclone with the target parameters:

$ git annex initremote dropbox-for-friends type=external externaltype=rclone chunk=50MiB␣
→˓encryption=none target=dropbox-for-friends

initremote dropbox-for-friends ok
(recording state in git...)

What has happened up to this point is that we have configured Dropbox as a third-party storage
service for the annexed contents in the dataset. On a conceptual, dataset level, your Dropbox
folder is now a sibling:

$ datalad siblings
.: here(+) [git]
.: dropbox-for-friends(+) [rclone]
.: roommate(+) [../mock_user/DataLad-101 (git)]

167 https://github.com/DanielDent/git-annex-remote-rclone
168 https://rclone.or
169 http://neuro.debian.org
183 Note that export will extend your $PATH for your current shell. This means you will have to repeat this command

if you open a new shell. Alternatively, you can insert this line into your shells configuration file (e.g., ~/.bashrc) to
make this path available to all future shells of your user account.

13.1. Beyond shared infrastructure 175

https://github.com/DanielDent/git-annex-remote-rclone
https://rclone.or
http://neuro.debian.org
http://neuro.debian.org

The DataLad Handbook, Release 0.12.0+519.g04985082

On Dropbox, a new folder, git-annex will be created for your annexed files. However, this is
not the location you would refer your friend or a collaborator to. The representation of the
files in the special-remote is not human-readable – it is a tree of annex objects, and thus looks
like a bunch of very weirdly named folders and files to anyone. Through this design it becomes
possible to chunk files into smaller units (see the git-annex documentation170 for more on this),
optionally encrypt content on its way from a local machine to a storage service (see the git-
annex documentation171 for more on this), and avoid leakage of information via file names.
Therefore, the Dropbox remote is not a places a real person would take a look at, instead they
are only meant to be managed and accessed via DataLad/git-annex.

To actually share your dataset with someone, you need to publish it to Github, Gitlab, or a
similar hosting service.

You could, for example, create a sibling of the DataLad-101 dataset on GitHub with the com-
mand datalad-sibling-github. This will create a new GitHub repository called “DataLad-101”
under your account, and configure this repository as a sibling of your dataset called github
(exactly like you have done in YODA-compliant data analysis projects (page 137) with the
midterm_project subdataset). However, in order to be able to link the contents stored in Drop-
box, you also need to configure a publication dependency to the dropbox-for-friends sibling –
this is done with the publish-depends <sibling> option.

$ datalad create-sibling-github -d . DataLad-101 --publish-depends dropbox-for-friends
[INFO] Configure additional publication dependency on "dropbox-for-friends"
.: github(-) [https://github.com/<user-name>/DataLad-101.git (git)]
'https://github.com/<user-name>/DataLad-101.git' configured as sibling 'github' for

→˓<Dataset path=/home/me/dl-101/DataLad-101>

datalad siblings will again list all available siblings:

$ datalad siblings
.: here(+) [git]
.: dropbox-for-friends(+) [rclone]
.: roommate(+) [../mock_user/DataLad-101 (git)]
.: github(-) [https://github.com/<user-name>/DataLad-101.git (git)]

Note that each sibling has either a + or - attached to its name. This indicates the presence (+) or
absence (-) of a remote data annex at this remote. You can see that your github sibling indeed
does not have a remote data annex. Therefore, instead of “only” publishing to this GitHub repos-
itory (as done in section YODA-compliant data analysis projects (page 137)), in order to also
publish annex contents, we made publishing to GitHub dependent on the dropbox-for-friends
sibling (that has a remote data annex), so that annexed contents are published there first.

Note: Note that the publication dependency is only established for your own dataset, it is not
shared with clones of the dataset. Internally, this configuration is a key value pair in the section
of your remote in .git/config:

[remote "github"]
annex-ignore = true
url = https://github.com/<user-name>/DataLad-101.git
fetch = +refs/heads/*:refs/remotes/github/*
datalad-publish-depends = dropbox-for-friends

170 https://git-annex.branchable.com/chunking/
171 https://git-annex.branchable.com/encryption/

13.1. Beyond shared infrastructure 176

https://git-annex.branchable.com/chunking/
https://git-annex.branchable.com/encryption/
https://git-annex.branchable.com/encryption/

The DataLad Handbook, Release 0.12.0+519.g04985082

With this setup, we can publish the dataset to GitHub. Note how the publication dependency is
served first:

$ datalad push --to github
[INFO] Transferring data to configured publication dependency: 'dropbox-for-friends'
[INFO] Publishing <Dataset path=/home/me/dl-101/DataLad-101> data to dropbox-for-
→˓friends
publish(ok): books/TLCL.pdf (file)
publish(ok): books/byte-of-python.pdf (file)
publish(ok): books/progit.pdf (file)
publish(ok): recordings/interval_logo_small.jpg (file)
publish(ok): recordings/salt_logo_small.jpg (file)
[INFO] Publishing to configured dependency: 'dropbox-for-friends'
[INFO] Publishing <Dataset path=/home/me/dl-101/DataLad-101> data to dropbox-for-
→˓friends
[INFO] Publishing <Dataset path=/home/me/dl-101/DataLad-101> to github
Username for 'https://github.com': <user-name>
Password for 'https://<user-name>@github.com':
publish(ok): . (dataset) [pushed to github: ['[new branch]', '[new branch]']]
action summary:
publish (ok: 6)

Afterwards, your dataset can be found on GitHub, and cloned or installed.

The option --transfer-data determines how publishing annexed contents should be han-
dled. With the option all, all annexed contents are published to the third-party data storage.
--transfer-data none, however, only publishes information stored in Git – that is: The sym-
link, as information about file availability, but no file content. Anyone who attempts to datalad
get a file from a dataset clone if its contents were not published will fail.

From the perspective of whom you share your dataset with. . .

If your friend would now want to get your dataset including the annexed contents, and you
made sure that they can access the Dropbox folder with the annexed files (e.g., by sharing an
access link), here is what they would have to do:

If the repository is on GitHub, a datalad clone with the URL will install the dataset:

$ datalad clone https://github.com/<user-name>/DataLad-101.git
[INFO] Cloning https://github.com/<user-name>/DataLad-101.git [1 other candidates]␣
→˓into '/Users/awagner/Documents/DataLad-101'
[INFO] Remote origin not usable by git-annex; setting annex-ignore
[INFO] access to 1 dataset sibling dropbox-for-friends not auto-enabled, enable with:
| datalad siblings -d "/Users/awagner/Documents/DataLad-101" enable -s dropbox-
→˓for-friends
install(ok): /Users/awagner/Documents/DataLad-101 (dataset)

Pay attention to one crucial information in this output:

[INFO] access to 1 dataset sibling dropbox-for-friends not auto-enabled, enable with:
| datalad siblings -d "/Users/<user-name>/Documents/DataLad-101" enable -s␣
→˓dropbox-for-friends

13.1. Beyond shared infrastructure 177

The DataLad Handbook, Release 0.12.0+519.g04985082

This means that someone who wants to access the data from dropbox needs to enable the special
remote. For this, this person first needs to install and configure rclone as well: Since rclone
is the protocol with which annexed data can be transferred from and to Dropbox, anyone who
needs annexed data from Dropbox needs this special remote. Therefore, the first steps are the
same as before:

• Install172 rclone (as described above).

• Run rclone config to configure rclone to work with Dropbox (as described above). It
is important to name the remote “dropbox-for-friends” (i.e., give it the same name as the
one configured in the dataset).

• git clone the git-annex-remote-rclone173 repository and copy the path into your $PATH
variable (as described above).

After this is done, you can execute what DataLad’s output message suggests to “enable” this
special remote (inside of the installed DataLad-101):

$ datalad siblings -d "/Users/awagner/Documents/DataLad-101" enable -s dropbox-for-friends
.: dropbox-for-friends(?) [git]

And once this is done, you can get any annexed file contents, for example the books, or the
cropped logos from chapter DataLad, Run! (page 52):

$ datalad get books/TLCL.pdf
get(ok): /home/some/other/user/DataLad-101/books/TLCL.pdf (file) [from dropbox-for-
→˓friends]

Use GitHub for sharing content

GitHub supports Git Large File Storage174 (Git LFS) for managing data files using Git. Free
GitHub subscription allows up to 1GB of free storage and up to 1GB of bandwidth monthly175.
As such, it might be sufficient for some use cases, and could be configured quite easily. Similarly
to the steps above, we need first to create a repository on GitHub if it does not already exist:

$ datalad create-sibling-github test-github-lfs
.: github(-) [https://github.com/yarikoptic/test-github-lfs.git (git)]
'https://github.com/yarikoptic/test-github-lfs.git' configured as sibling 'github' for
→˓<Dataset path=/tmp/test-github-lfs>

and then initialize special remote of type git-lfs, pointing to the same GitHub repository:

$ git annex initremote github-lfs type=git-lfs url=https://github.com/yarikoptic/test-
→˓github-lfs encryption=none embedcreds=no

If you would like to compress data in Git LFS, you need to take a detour via encryption during
git annex initremote – this has compression as a convenient side effect. Here is an example
initialization:

172 https://rclone.org/install/
173 https://github.com/DanielDent/git-annex-remote-rclone
174 https://github.com/git-lfs/git-lfs
175 https://help.github.com/en/github/managing-large-files/about-storage-and-bandwidth-usage

13.1. Beyond shared infrastructure 178

https://rclone.org/install/
https://github.com/DanielDent/git-annex-remote-rclone
https://github.com/git-lfs/git-lfs
https://help.github.com/en/github/managing-large-files/about-storage-and-bandwidth-usage

The DataLad Handbook, Release 0.12.0+519.g04985082

$ git annex initremote --force github-lfs type=git-lfs url=https://github.com/yarikoptic/
→˓test-github-lfs encryption=shared

With this single step it becomes possible to transfer contents to GitHub:

$ git annex copy --to=github-lfs file.dat
copy file.dat (to github-lfs...)
ok
(recording state in git...)

and the entire dataset to the same GitHub repository:

$ datalad push --to=github
[INFO] Publishing <Dataset path=/tmp/test-github-lfs> to github
publish(ok): . (dataset) [pushed to github: ['[new branch]', '[new branch]']]

Because the special remote URL coincides with the regular remote URL on GitHub, siblings
enable will not even be necessary when datalad is installed from GitHub.

Note: Unfortunately, it is impossible to drop contents from Git LFS:
help.github.com/en/github/managing-large-files176

Built-in data export

Apart from flexibly configurable special remotes that allow publishing annexed content to a
variety of third party infrastructure, DataLad also has some build-in support for “exporting”
data to other services.

One example is the command export-archive. Running this command would produce a .tar.
gz file with the content of your dataset, which you could later upload to any data hosting portal
manually. This moves data out of version control and decentralized tracking, and essentially
“throws it over the wall”. This means, while your data (also the annexed data) will be available
for download from where you share it, none of the special features a DataLad dataset provides
will be available, such as its history or configurations.

Another example is export-to-figshare. Running this command allows you to publish the
dataset to Figshare177. As the export-archive is used by it to prepare content for upload to
Figshare, annexed files also will be annotated as available from the archive on Figshare using
datalad-archive special remote. As a result, if you publish your Figshare dataset and share
your DataLad dataset on GitHub, users will still be able to fetch content from the tarball shared
on Figshare via DataLad.

13.2 Dataset hosting on GIN

GIN184 (G-Node infrastructure) is a free data management system designed for comprehensive
and reproducible management of scientific data. It is a web-based repository store and provides

176 https://help.github.com/en/github/managing-large-files/removing-files-from-git-large-file-storage#
git-lfs-objects-in-your-repository

177 https://figshare.com/
184 https://gin.g-node.org/G-Node/Info/wiki

13.2. Dataset hosting on GIN 179

https://help.github.com/en/github/managing-large-files/removing-files-from-git-large-file-storage#git-lfs-objects-in-your-repository
https://figshare.com/
https://gin.g-node.org/G-Node/Info/wiki

The DataLad Handbook, Release 0.12.0+519.g04985082

fine-grained access control to share data. GIN builds up on Git and git-annex, and is an easy
alternative to other third-party services to host and share your DataLad datasets187. It allows
to share datasets and their contents with selected collaborators or making them publicly and
anonymously available.

Note: If you reached this section to find out how to access a DataLad dataset shared on Gin,
please skip to the section Sharing and accessing the dataset (page 183).

Prerequisites

In order to use GIN for hosting and sharing your datasets, you need to

• register

• upload your public SSH key for SSH access

• create an empty repository on GIN and publish your dataset to it

Todo: Revise this last step once there is a datalad create-sibling-gin command: https:
//github.com/datalad/datalad/issues/2680

Once you have registered185 an account on the GIN server by providing your e-mail address,
affiliation, and name, and selecting a user name and password, you should upload your SSH
key to allow SSH access.

Find out more

What is an SSH key and how can I create one?
An SSH key is an access credential in the SSH protocol that can be used to login from
one system to remote servers and services, such as from your private computer to an SSH
server. For repository hosting services such as GIN, GitHub, or GitLab, it can be used to
connect and authenticate without supplying your username or password for each action.
This tutorial by GitHub186 is a detailed step-by-step instruction to generate and use SSH
keys for authentication, and it also shows you how to add your public SSH key to your
GitHub account so that you can install or clone datasets or Git repositories via SSH (in
addition to the http protocol), and the same procedure applies to GitLab and Gin.
Don’t be intimidated if you have never done this before – it is fast and easy: First, you
need to create a private and a public key (an SSH key pair). All this takes is a single
command in the terminal. The resulting files are text files that look like someone spilled
alphabet soup in them, but constitute a secure password procedure. You keep the private
key on your own machine (the system you are connecting from, and that only you have
access to), and copy the public key to the system or service you are connecting to.
On the remote system or service, you make the public key an authorized key to allow
authentication via the SSH key pair instead of your password. This either takes a single

187 GIN looks and feels similar to GitHub, and among a number advantages, it can assign a DOI to your dataset,
making it cite-able. Moreover, its web interface188 and client189 are useful tools with a variety of features that are
worthwhile to check out, as well.

188 https://gin.g-node.org/G-Node/Info/wiki/WebInterface
189 https://gin.g-node.org/G-Node/Info/wiki/GinUsageTutorial
185 https://gin.g-node.org/user/sign_up

13.2. Dataset hosting on GIN 180

https://github.com/datalad/datalad/issues/2680
https://github.com/datalad/datalad/issues/2680
https://gin.g-node.org/user/sign_up
https://help.github.com/en/github/authenticating-to-github/generating-a-new-ssh-key-and-adding-it-to-the-ssh-agent
https://gin.g-node.org/G-Node/Info/wiki/WebInterface
https://gin.g-node.org/G-Node/Info/wiki/GinUsageTutorial

The DataLad Handbook, Release 0.12.0+519.g04985082

command in the terminal, or a few clicks in a web interface to achieve. You should
protect your SSH keys on your machine with a passphrase to prevent others – e.g., in
case of theft – to log in to servers or services with SSH authentication190, and configure
an ssh agent to handle this passphrase for you with a single command. How to do all of
this is detailed in the above tutorial.

186 https://help.github.com/en/github/authenticating-to-github/generating-a-new-ssh-key-and-adding-it-to-the-ssh-agent
190 Your private SSH key is incredibly valuable, and it is important to keep it secret! Anyone who gets

your private key has access to anything that the public key is protecting. If the private key does not have a
passphrase, simply copying this file grants a person access!

To do this, visit the settings of your user account. On the left hand side, select the tab “SSH
Keys”, and click the button “Add Key”:

You should copy the contents of your public key file into the field labeled content, and enter
an arbitrary but informative Key Name, such as “My private work station”. Afterwards, you are
done!

Publishing your dataset to GIN

To publish an existing dataset to GIN, create a new, empty repository on GIN first. Unlike with
datalad create-sibling-github (that does this step automatically for you on GitHub), this
needs to be done via the web interface:

13.2. Dataset hosting on GIN 181

The DataLad Handbook, Release 0.12.0+519.g04985082

Afterwards, add this repository as a sibling of your dataset. To do this, use the datalad siblings
add command and the SSH URL of the repository as shown below. Note that since this is the
first time you will be connecting to the GIN server via SSH, you will likely be asked to confirm
to connect. This is a safety measure, and you can type “yes” to continue:

$ datalad siblings add -d . --name gin --url git@gin.g-node.org:/adswa/DataLad-101.git

The authenticity of host 'gin.g-node.org (141.84.41.219)' can't be established.
ECDSA key fingerprint is SHA256:E35RRG3bhoAm/WD+0dqKpFnxJ9+yi0uUiFLi+H/lkdU.
Are you sure you want to continue connecting (yes/no)? yes
[INFO] Failed to enable annex remote gin, could be a pure git or not accessible
[WARNING] Failed to determine if gin carries annex.
.: gin(-) [git@gin.g-node.org:/adswa/DataLad-101.git (git)]

Afterwards, you can publish your dataset with datalad push. As the repository on GIN sup-
ports a dataset annex, there is no publication dependency to an external data hosting service
necessary, and the dataset contents stored in Git and in git-annex are published to the same
place:

$ datalad push --to gin
[INFO] Start enumerating objects
[INFO] Start counting objects
[INFO] Start compressing objects
[INFO] Start writing objects
[INFO] Start resolving deltas
[INFO] Start enumerating objects
[INFO] Start counting objects
[INFO] Start compressing objects
[INFO] Start writing objects
[INFO] Start resolving deltas
publish(ok): . (dataset) [refs/heads/master->gin:refs/heads/master [new␣
→˓branch]]
copy(ok): books/TLCL.pdf (file) [to gin...]
copy(ok): books/bash_guide.pdf (file) [to gin...]
copy(ok): books/byte-of-python.pdf (file) [to gin...]
copy(ok): books/progit.pdf (file) [to gin...]
publish(ok): . (dataset) [refs/heads/git-annex->gin:refs/heads/git-annex␣
→˓9df4d51..2285f9d] (continues on next page)

13.2. Dataset hosting on GIN 182

The DataLad Handbook, Release 0.12.0+519.g04985082

(continued from previous page)

If you refresh the GIN web interface afterwards, you will find all of your dataset – including
annexed contents! – on GIN. What is especially cool is that the GIN web interface (unlike
GitHub) can even preview your annexed contents.

Sharing and accessing the dataset

Once your dataset is published, you can point collaborators and friends to it.

If it is a public repository, retrieving the dataset and getting access to all published data contents
(in a read-only fashion) is done by cloning the repository’s https url. This does not require a
user account on Gin.

$ datalad clone https://gin.g-node.org/adswa/DataLad-101
[INFO] Cloning dataset to <Dataset path=/home/me/dl-101/clone_of_dl-101/DataLad-101>
[INFO] Attempting to clone from https://gin.g-node.org/adswa/DataLad-101 to /home/me/dl-
→˓101/clone_of_dl-101/DataLad-101
[INFO] Start enumerating objects
[INFO] Start counting objects
[INFO] Start compressing objects
[INFO] Start receiving objects
[INFO] Start resolving deltas
[INFO] Completed clone attempts for <Dataset path=/home/me/dl-101/clone_of_dl-101/DataLad-
→˓101>
install(ok): /home/me/dl-101/clone_of_dl-101/DataLad-101 (dataset)

Subsequently, datalad get calls will be able to retrieve all annexed file contents that have been
published to the repository.

If it is a private dataset, cloning the dataset from Gin requires a user name and password for
anyone you want to share your dataset with. The “Collaboration” tab under Settings lets you
set fine-grained access rights, and it is possible to share datasets with collaborators that are not
registered on GIN with provided Guest accounts. In order to get access to annexed contents,
cloning requires setting up an SSH key as detailed above, and cloning via the SSH url:

13.2. Dataset hosting on GIN 183

The DataLad Handbook, Release 0.12.0+519.g04985082

$ datalad clone git@gin.g-node.org:/adswa/DataLad-101.git

Find out more

How do I know if my repository is private?
Private repos are marked with a lock sign. To make it public, untick the “Private” box,
found under “Settings”:

In order to publish changes to a Gin repository, the repository needs to be cloned via its SSH
url.

Subdataset publishing

Just as the input subdataset iris_data in your published midterm_project was referencing
its source on GitHub, the longnow subdataset in your published DataLad-101 dataset directly
references the original dataset on GitHub. If you click onto recordings and then longnow, you
will be redirected to the podcast’s original dataset.

The subdataset midterm_project, however, is not successfully referenced. If you click on it, you
would get to a 404 Error page. The crucial difference between this subdataset and the longnow
dataset is its entry in the .gitmodules file of DataLad-101:

$ cat .gitmodules
[submodule "recordings/longnow"]

path = recordings/longnow
url = https://github.com/datalad-datasets/longnow-podcasts.git
datalad-id = b3ca2718-8901-11e8-99aa-a0369f7c647e

[submodule "midterm_project"]
path = midterm_project
url = ./midterm_project
datalad-id = e5a3d370-223d-11ea-af8b-e86a64c8054c

While the podcast subdataset is referenced with a valid URL to GitHub, the midterm project’s
URL is a relative path from the root of the superdataset. This is because the longnow

13.2. Dataset hosting on GIN 184

The DataLad Handbook, Release 0.12.0+519.g04985082

subdataset was installed with datalad clone -d . (that records the source of the sub-
dataset), and the midterm_project dataset was created as a subdataset with datalad create
-d . midterm_project. Since there is no repository at https://gin.g-node.org/<USER>/
DataLad-101/midterm_project (which this submodule entry would resolve to), accessing the
subdataset fails.

However, since you have already published this dataset (to GitHub), you could update the
submodule entry and provide the accessible GitHub URL instead. This can be done via the
set-property <NAME> <VALUE> option of datalad subdatasets191 (replace the URL shown here
with the URL your dataset was published to – likely, you only need to change the user name):

$ datalad subdatasets --contains midterm_project --set-property url https://github.com/
→˓adswa/midtermproject
subdataset(ok): midterm_project (dataset)

$ cat .gitmodules
[submodule "recordings/longnow"]

path = recordings/longnow
url = https://github.com/datalad-datasets/longnow-podcasts.git
branch = master
datalad-id = b3ca2718-8901-11e8-99aa-a0369f7c647e

[submodule "midterm_project"]
path = midterm_project
url = https://github.com/adswa/midtermproject
branch = master
datalad-id = 933e9fb6-647d-11ea-8652-27eb4f93a5dc

Handily, the datalad subdatasets command saved this change to the .gitmodules file auto-
matically and the state of the dataset is clean:

$ datalad status
nothing to save, working tree clean

Afterwards, publish these changes to gin and see for yourself how this fixed the problem:

$ datalad push --to gin
[INFO] Start enumerating objects
[INFO] Start counting objects
[INFO] Start compressing objects
[INFO] Start writing objects
publish(ok): . (dataset) [refs/heads/master->gin:refs/heads/master ab85415..a1aff52]

If the subdataset was not published before, you could publish the subdataset to a location of
your choice, and modify the .gitmodules entry accordingly.

191 Alternatively, you can configure the siblings url with git config:

$ git config -f .gitmodules --replace-all submodule.midterm_project.url https://github.com/adswa/
→˓midtermproject

Remember, though, that this command modifies .gitmodules without an automatic, subsequent save, so that you
will have to save this change manually.

13.2. Dataset hosting on GIN 185

The DataLad Handbook, Release 0.12.0+519.g04985082

13.3 Overview: Publishing datasets

The sections YODA-compliant data analysis projects (page 137), Beyond shared infrastructure
(page 170), and Dataset hosting on GIN (page 179) have each shown you crucial aspects of the
functions of dataset publishing with datalad push. This section wraps them all together.

Note: datalad push requires DataLad version 0.13.0 or higher. Older DataLad versions need
to use the datalad publish command. For details into datalad publish, please check out the
hidden section at the end of this page.

The general overview

datalad push is the command to turn to when you want to publish datasets. It is capable of
publishing all dataset content, i.e., files stored in Git, and files stored with git-annex, to a known
dataset sibling.

Note for Git users

The datalad push uses git push, and git annex copy under the hood. Publication
targets need to either be configured remote Git repositories, or git-annex special remotes
(if they support data upload).

In order to publish a dataset, the dataset needs to have a sibling to push to. This, for instance,
can be a GitHub, GitLab, or Gin repository, but it can also be a Remote Indexed Archive (RIA)
store for backup or storage of datasets197, or a regular clone198.

Find out more

all of the ways to configure siblings
• Add an existing repository as a sibling with the datalad siblings command. Here

are common examples:

197 RIA siblings are filesystem-based, scalable storage solutions for DataLad datasets. You can find out more about
them in the section Remote Indexed Archives for dataset storage and backup (page 257).

198 If you are unfamiliar with Git, please be aware that cloning a dataset to a different place and subsequently
pushing to it can lead to Git error messages if changes are pushed to a currently checked out branch of the sibling
(in technical Git terms: When pushing to a checked-out branch of a non-bare repository remote). As an exam-
ple, consider what happens if we attempt a datalad push to the sibling roommate that we created in the chapter
Collaboration (page 83):

$ datalad push --to roommate
[INFO] Start enumerating objects
[INFO] Start counting objects
[INFO] Start compressing objects
[INFO] Start writing objects
[ERROR] refs/heads/master->roommate:refs/heads/master [remote rejected] (branch is currently␣
→˓checked out) [publish(/home/me/dl-101/DataLad-101)]
publish(error): . (dataset) [refs/heads/master->roommate:refs/heads/master [remote rejected]␣
→˓(branch is currently checked out)]

Publishing fails with the error message [remote rejected] (branch is currently checked out). This can be
prevented with configuration settings199 in Git versions 2.3 or higher, or by pushing to a branch of the sibling that is
currently not checked-out.

199 https://github.blog/2015-02-06-git-2-3-has-been-released/

13.3. Overview: Publishing datasets 186

https://github.blog/2015-02-06-git-2-3-has-been-released/

The DataLad Handbook, Release 0.12.0+519.g04985082

to a remote repository
$ datalad siblings add --name github-repo --url <url.to.github>
to a local path
$ datalad siblings add --name local-sibling --url /path/to/sibling/ds
to a clone on an SSH-accessible machine
$ datalad siblings add --name server-sibling --url [user@]hostname:/path/to/
→˓sibling/ds

• Create a sibling on an external hosting service from scratch, right from within
your repository: This can be done with the commands create-sibling-github
(for GitHub) or create-siblings-gitlab (for GitLab), or create-sibling-ria (for
a remote indexed archive dataset store197). Note that create-sibling-ria can add
an existing store as a sibling or create a new one from scratch.

• Create a sibling on a local or SSH accessible Unix machine with datalad
create-sibling (datalad-create-sibling manual).

In order to publish dataset content, DataLad needs to know to which sibling content shall be
pushed. This can be specified with the --to option directly from the command line:

$ datalad push --to <sibling>

If you have more than one branch in your dataset, note that a datalad push command will by
default update all branches that both the sibling and the dataset share. If such advanced aspects
of pushing are relevant for your workflow, please check out the hidden section at the end of this
paragraph.

By default, push will make the last saved state of the dataset available. Consequently, if the
sibling is in the same state as the dataset, no push is attempted. Additionally, push will attempt
to automatically decide what type of dataset contents are going to be published. With a sibling
that has a special remote configured as a publication dependency, or a sibling that contains an an-
nex (such as a Gin repository or a Remote Indexed Archive (RIA) store), both the contents stored
in Git (i.e., a dataset’s history) as well as file contents stored in git-annex will be published.

Alternatively, one can enforce particular operations or push a subset of dataset contents. For
one, when specifying a path in the datalad push command, only data or changes for those
paths are considered for a push. Additionally, one can select a particular mode of operation
with the -f/--force option. Several different modes are possible:

• no-datatransfer: With this option, annexed contents are not published. This means that
the sibling will have information on the annexed files’ names, but file contents will not be
available, and thus datalad get calls in the sibling would fail.

• datatransfer: With this option, the underlying git annex copy call to publish file con-
tents is evoked without a --fast option. Usually, the --fast option increases the speed
of the operation, as it disables a check whether the sibling already has content. This how-
ever, might skip copying content in some cases. Therefore, --force datatransfer is a
slower, but more fail-safe option to publish annexed file contents.

• gitpush: This option triggers a git push --force. Be very careful using this option - it
will push all branches that are known to the sibling, and if the changes on these branches
are conflicting with the changes that exist in the sibling, the changes that exist in the
sibling will be overwritten.

• all: The final mode, all, combines modes gitpush and datatransfer, thus attempting
to really get your dataset contents published.

13.3. Overview: Publishing datasets 187

The DataLad Handbook, Release 0.12.0+519.g04985082

datalad push can publish available subdatasets recursively if the -r/--recursive flag is spec-
ified. Note that this requires that all subdatasets that should be published have sibling names
identical to the sibling specified in the top-level push command, or that appropriate default
publication targets are configured throughout the dataset hierarchy.

Find out more

Pushing more than the current branch
If you have more than one branch in your dataset, a datalad push --to <sibling> will
by default only push the current branch, unless you provide configurations that alter this
default. Here are two ways in which this can be achieved:
Option 1: Setting the push.default configuration variable from simple (the default) to
matching will configure the dataset such that push pushes all branches to the sibling. A
concrete example: On a dataset level, this can be done using

$ git config --local push.default matching

Option 2: Tweaking the default push refspec192 for the dataset allows to select a range
of branches that should be pushed. The link above gives a thorough introduction into the
refspec. For a hands-on example, consider how it is done for the published DataLad-101
dataset193:
The published version of the handbook is known to the local handbook dataset as a
remote called public, and each section of the book is identified with a custom branch
name that corresponds to the section name. Whenever an update to the public dataset
is pushed, apart from pushing only the master branch, all branches starting with the
section identifier sct are pushed automatically as well. This configuration was achieved
by specifying these branches (using globbing with *) in the push specification of this
remote:

$ git config --local remote.public.push 'refs/heads/sct*'

192 https://git-scm.com/book/en/v2/Git-Internals-The-Refspec
193 https://github.com/datalad-handbook/DataLad-101

Setting access control via publishing

There are a number of ways to restrict access to your dataset or individual files of your dataset.
One is via choice of (third party) hosting service for annexed file contents. If you chose a service
only selected people have access to, and publish annexed contents exclusively there, then only
those selected people can perform a successful datalad get. On shared file systems you may
achieve this via permissions for certain groups or users, and for third party infrastructure you
may achieve this by invitations/permissions/. . . options of the respective service.

If it is individual files that you do not want to share, you can selectively publish the contents of
all files you want others to have, and withhold the data of the files you do not want to share.
This can be done by publishing only selected files by providing paths, or overriding default push
behavior with the -f/--force option. In the latter case, specifying -f no-datatransfer would
for example not push any annexed contents.

Let’s say you have a dataset with three files:

• experiment.txt

• subject_1.dat

13.3. Overview: Publishing datasets 188

https://git-scm.com/book/en/v2/Git-Internals-The-Refspec
https://github.com/datalad-handbook/DataLad-101
https://github.com/datalad-handbook/DataLad-101

The DataLad Handbook, Release 0.12.0+519.g04985082

• subject_2.dat

Consider that all of these files are annexed. While the information in experiment.txt is fine for
everyone to see, subject_1.dat and subject_2.dat contain personal and potentially identifying
data that can not be shared. Nevertheless, you want collaborators to know that these files exist.
The use case

Todo: Write use case “external researcher without data access”

details such a scenario and demonstrates how external collaborators (with whom data can not
be shared) can develop scripts against the directory structure and file names of a dataset, submit
those scripts to the data owners, and thus still perform an analysis despite not having access to
the data.

By publishing only the file contents of experiment.txt with

$ datalad push --to github experiment.txt

only meta data about file availability of subject_1.dat and subject_2.dat exists, but as these
files’ annexed data is not published, a datalad get will fail. Note, though, that push will publish
the complete dataset history (unless you specify a commit range with the --since option – see
the manual194 for more information).

Find out more

On the datalad publish command
Starting with DataLad version 0.13.0, datalad push was introduced and became an
alternative to datalad publish, which will be removed in a future DataLad release.
By default, datalad publish publishes the last saved state of the dataset (i.e., its Git
history) to a specified sibling:

$ datalad publish --to <sibling>

Like push, it supports recursive publishing across dataset hierarchies (if all datasets have
appropriately configured default publication targets or identical sibling names) with the
-r/--recursive flag, and it supports the --since option.
Main differences to push lie in publishs --transfer-data option that can be specified
with either all, auto or none and determines whether and how annexed contents should
be published if the sibling carries an annex: none will transfer only Git history and no an-
nexed data, auto relies on configurations of the sibling, and all will publish all annexed
contents.
By default, when using a plain datalad publish --to <sibling> with no path specifi-
cation or --transfer-data option, publish will be used in auto mode. In practice, this
default will most likely lead to the same outcome as when specifying none: only your
datasets history, but no annexed contents will be published.

194 http://docs.datalad.org/en/latest/generated/man/datalad-push.html

13.3. Overview: Publishing datasets 189

http://docs.datalad.org/en/latest/generated/man/datalad-push.html

The DataLad Handbook, Release 0.12.0+519.g04985082

Note for Git users

On a technical level, the auto option leads to adding auto to the underlying git
annex copy command, which in turn publishes annexed contents based on the
git-annex preferred content configuration195 of the sibling.

195 https://git-annex.branchable.com/git-annex-preferred-content/

In order to publish all annexed contents, one needs to specify --transfer-data all.
Alternatively, adding paths to the publish call will publish the specified annexed con-
tent (unless --transfer-data none is explicitly added). As yet another alternative, one
needs to add appropriate configuration for git-annex, that publish can rely on in auto
mode. These configurations allow fine-grained specifications of up to file type or indi-
vidual file level. More information on these configurations can be found in git-annex’s
documentation196.

196 https://git-annex.branchable.com/git-annex-preferred-content/

13.4 Summary

Without access to the same computational infrastructure, you can share your DataLad datasets
with friends and collaborators by leveraging third party services. DataLad integrates well with
a variety of free or commercial services, and with many available service options this gives you
freedom in deciding where you store your data and thus who can get access.

• An easy, free, and fast option is GIN200, a web-based repository store for scientific data
management. If you are registered and have SSH authentication set up, you can create a
new, empty repository, add it as a sibling to your dataset, and publish all dataset contents
– including annexed data, as GIN supports repositories with an annex.

• Other repository hosting services such as GitHub and GitLab202do not support an annex.
If a dataset is shared via one of those platforms, annexed data needs to be published to
an external data store. The published dataset stores information about where to obtain
annexed file contents from such that a datalad get works.

• The external data store can be any of a variety of third party hosting providers. To enable
data transfer to and from this service, you (may) need to configure an appropriate special
remote, and configure a publication dependency. The section Beyond shared infrastructure
(page 170) walked you through how this can be done with Dropbox201.

• The -f/--force option of datalad push allows to override automatic decision making
on to-be-published contents. If it isn’t specified, DataLad will attempt to figure out itself
which and how dataset contents shall be published. With a path to files, directories, or
subdatasets you can also publish only selected contents’ data.

200 https://gin.g-node.org
202 GitLab does provide a git-annex configuration, but it is disabled by default, and to enable it you would need to

have administrative access to the server and client side of your GitLab instance. Find out more here203.
203 https://docs.gitlab.com/ee/administration/git_annex.html
201 https://dropbox.com

13.4. Summary 190

https://git-annex.branchable.com/git-annex-preferred-content/
https://git-annex.branchable.com/git-annex-preferred-content/
https://git-annex.branchable.com/git-annex-preferred-content/
https://gin.g-node.org
https://dropbox.com
https://docs.gitlab.com/ee/administration/git_annex.html

The DataLad Handbook, Release 0.12.0+519.g04985082

Now what can I do with it?

Finally you can share datasets and their annexed contents with others without the need for a
shared computational infrastructure. It remains your choice where to publish your dataset to
– considerations of data access, safety, or potential costs will likely influence your choice of
service.

13.4. Summary 191

CHAPTER

FOURTEEN

HELP YOURSELF

14.1 What to do if things go wrong

After all of the DataLad-101 lectures and tutorials so far, you really begin to appreciate the
pre-crafted examples and tasks the handbook provides. “Nothing really goes wrong, and if so,
it’s intended”, you acknowledge. “But how does this prepare me for life after the course? I’ve
seen a lot of different errors and know many caveats and principles already, but I certainly will
mess something up at one point. How can I get help, or use the history of the dataset to undo
what I screwed up? Also, I’m not sure whether I know what I can and can not do with the files
inside of my dataset. . . What if I would like to remove one, for example?”

Therefore, this upcoming chapter is a series of tutorials about common file system operations,
interactions with the history of datasets, and how to get help after errors.

192

The DataLad Handbook, Release 0.12.0+519.g04985082

14.2 Miscellaneous file system operations

With all of the information about symlinks and object trees, you might be reluctant to perform
usual file system managing operations, such as copying, moving, renaming or deleting files or
directories with annexed content.

If I renamed one of those books, would the symlink that points to the file content still be correct?
What happens if I’d copy an annexed file? If I moved the whole books/ directory? What if I
moved all of DataLad-101 into a different place on my computer? What if renamed the whole
superdataset? And how do I remove a file, or directory, or subdataset?

Therefore, there is an extra tutorial offered by the courses’ TA today, and you attend. There is
no better way of learning than doing. Here, in the safe space of the DataLad-101 course, you
can try out all of the things you would be unsure about or reluctant to try on the dataset that
contains your own, valuable data.

Below you will find common questions about file system management operations, and each
question outlines caveats and solutions with code examples you can paste into your own ter-
minal. Because these code snippets will add many commits to your dataset, we’re cleaning up
within each segment with common git operations that manipulate the datasets history – be sure
to execute these commands as well (and be sure to be in the correct dataset).

Renaming files

Let’s try it. In Unix, renaming a file is exactly the same as moving a file, and uses the mv
command.

$ cd books/
$ mv TLCL.pdf The_Linux_Command_Line.pdf
$ ls -lah
total 24K
drwxr-xr-x 2 adina adina 4.0K Feb 17 08:52 .
drwxr-xr-x 8 adina adina 4.0K Feb 17 08:52 ..
lrwxrwxrwx 1 adina adina 131 Jan 19 2009 bash_guide.pdf -> ../.git/annex/objects/WF/Gq/
→˓MD5E-s1198170--0ab2c121bcf68d7278af266f6a399c5f.pdf/MD5E-s1198170--
→˓0ab2c121bcf68d7278af266f6a399c5f.pdf
lrwxrwxrwx 1 adina adina 131 Apr 19 2017 byte-of-python.pdf -> ../.git/annex/objects/F1/
→˓Wz/MD5E-s4242644--f4e1c8ebfb5c89a69ff6d268eb2e63e3.pdf/MD5E-s4242644--
→˓f4e1c8ebfb5c89a69ff6d268eb2e63e3.pdf
lrwxrwxrwx 1 adina adina 133 Jun 29 2019 progit.pdf -> ../.git/annex/objects/G6/Gj/MD5E-
→˓s12465653--05cd7ed561d108c9bcf96022bc78a92c.pdf/MD5E-s12465653--
→˓05cd7ed561d108c9bcf96022bc78a92c.pdf
lrwxrwxrwx 1 adina adina 131 Jan 28 2019 The_Linux_Command_Line.pdf -> ../.git/annex/
→˓objects/jf/3M/MD5E-s2120211--06d1efcb05bb2c55cd039dab3fb28455.pdf/MD5E-s2120211--
→˓06d1efcb05bb2c55cd039dab3fb28455.pdf

Try to open the renamed file, e.g., with evince The_Linux_Command_Line.pdf. This works!

But let’s see what changed in the dataset with this operation:

$ datalad status
untracked: /home/me/dl-101/DataLad-101/books/The_Linux_Command_Line.pdf (symlink)
deleted: /home/me/dl-101/DataLad-101/books/TLCL.pdf (symlink)

14.2. Miscellaneous file system operations 193

The DataLad Handbook, Release 0.12.0+519.g04985082

We can see that the old file is marked as deleted, and simultaneously, an untracked file appears:
the renamed PDF.

While this might appear messy, a datalad save will clean all of this up. Therefore, do not panic
if you rename a file, and see a dirty dataset status with deleted and untracked files – datalad
save handles these and other cases really well under the hood.

$ datalad save -m "rename the book"
delete(ok): books/TLCL.pdf (file)
add(ok): books/The_Linux_Command_Line.pdf (file)
save(ok): . (dataset)
action summary:
add (ok: 1)
delete (ok: 1)
save (ok: 1)

The datalad save command will identify that a file was renamed, and will summarize this
nicely in the resulting commit:

$ git log -n 1 -p
commit 77c38d762508f5ee0bd5eb0e101dac7294972d31
Author: Elena Piscopia <elena@example.net>
Date: Mon Feb 17 08:52:27 2020 +0100

rename the book

diff --git a/books/TLCL.pdf b/books/The_Linux_Command_Line.pdf
similarity index 100%
rename from books/TLCL.pdf
rename to books/The_Linux_Command_Line.pdf

Note that datalad save commits all modifications when it’s called without a path specification,
so any other changes will be saved in the same commit as the rename. If there are unsaved
modifications you do not want to commit together with the file name change, you could give
both the new and the deleted file as a path specification to datalad save, even if it feels
unintuitive to save a change that is marked as a deletion in a datalad status:

datalad save -m "rename file" oldname newname

Alternatively, there is also a way to save the name change only using Git tools only, outlined in
the following hidden section. If you are a Git user, you will be very familiar with it.

Find out more: Renaming with Git tools

Git has built-in commands that provide a solution in two steps.

If you have followed along with the previous datalad save (which you should have), let’s revert
the renaming of the the files:

$ git reset --hard HEAD~1
$ datalad status
HEAD is now at 95dac60 add container and execute analysis within container
nothing to save, working tree clean

Now we’re checking out how to rename files and commit this operation using only Git: A Git-
specific way to rename files is the git mv command:

14.2. Miscellaneous file system operations 194

The DataLad Handbook, Release 0.12.0+519.g04985082

$ git mv TLCL.pdf The_Linux_Command_Line.pdf

$ datalad status
added: /home/me/dl-101/DataLad-101/books/The_Linux_Command_Line.pdf (file)

deleted: /home/me/dl-101/DataLad-101/books/TLCL.pdf (file)

We can see that the old file is still seen as “deleted”, but the “new”, renamed file is “added”. A
git status displays the change in the dataset a bit more accurately:

$ git status
On branch master
Changes to be committed:
(use "git restore --staged <file>..." to unstage)

renamed: TLCL.pdf -> The_Linux_Command_Line.pdf

Because the git mv places the change directly into the staging area (the index) of Git207, a
subsequent git commit -m "rename book" will write the renaming – and only the renaming –
to the dataset’s history, even if other (unstaged) modifications are present.

$ git commit -m "rename book"
[master a3ce4d7] rename book
1 file changed, 0 insertions(+), 0 deletions(-)
rename books/{TLCL.pdf => The_Linux_Command_Line.pdf} (100%)

To summarize, renaming files is easy and worry-free. Do not be intimidated by a file marked as
deleted – a datalad save will rectify this. Be mindful of other modifications in your dataset,
though, and either supply appropriate paths to datalad save, or use Git tools to exclusively
save the name change and nothing else.

Let’s revert this now, to have a clean history.

$ git reset --hard HEAD~1
$ datalad status
HEAD is now at 95dac60 add container and execute analysis within container
nothing to save, working tree clean

Moving files from or into subdirectories

Let’s move an annexed file from within books/ into the root of the superdataset:

$ mv TLCL.pdf ../TLCL.pdf
$ datalad status
untracked: /home/me/dl-101/DataLad-101/TLCL.pdf (symlink)
deleted: /home/me/dl-101/DataLad-101/books/TLCL.pdf (symlink)

In general, this looks exactly like renaming or moving a file in the same directory. There is a
subtle difference though: Currently, the symlink of the annexed file is broken. There are two

207 If you want to learn more about the Git-specific concepts of worktree, staging area/index or HEAD, check out
section . . .

Todo: Write a section on this high-level Git stuff. Maybe in draft of section on Git history. . .

14.2. Miscellaneous file system operations 195

The DataLad Handbook, Release 0.12.0+519.g04985082

ways to demonstrate this. One is trying to open the file – this will currently fail. The second
way is to look at the symlink:

$ cd ../
$ ls -l TLCL.pdf
lrwxrwxrwx 1 adina adina 131 Feb 17 08:52 TLCL.pdf -> ../.git/annex/objects/jf/3M/MD5E-
→˓s2120211--06d1efcb05bb2c55cd039dab3fb28455.pdf/MD5E-s2120211--
→˓06d1efcb05bb2c55cd039dab3fb28455.pdf

The first part of the symlink should point into the .git/ directory, but currently, it does not –
the symlink still looks like TLCL.pdf would be within books/. Instead of pointing into .git, it
currently points to ../.git, which is non-existent, and even outside of the superdataset. This is
why the file cannot be opened: When any program tries to follow the symlink, it will not resolve,
and an error such as “no file or directory” will be returned. But do not panic! A datalad save
will rectify this as well:

$ datalad save -m "moved book into root"
$ ls -l TLCL.pdf
delete(ok): books/TLCL.pdf (file)
add(ok): TLCL.pdf (file)
save(ok): . (dataset)
action summary:
add (ok: 1)
delete (ok: 1)
save (ok: 1)

lrwxrwxrwx 1 adina adina 128 Feb 17 08:52 TLCL.pdf -> .git/annex/objects/jf/3M/MD5E-
→˓s2120211--06d1efcb05bb2c55cd039dab3fb28455.pdf/MD5E-s2120211--
→˓06d1efcb05bb2c55cd039dab3fb28455.pdf

After a datalad save, the symlink is fixed again. Therefore, in general, whenever moving or
renaming a file, especially between directories, a datalad save is the best option to turn to.

Find out more: Why a move between directories is actually a content change

Let’s see how this shows up in the dataset history:

$ git log -n 1 -p
commit b57b451e07941294635654dfa2da982d8f384f1a
Author: Elena Piscopia <elena@example.net>
Date: Mon Feb 17 08:52:30 2020 +0100

moved book into root

diff --git a/TLCL.pdf b/TLCL.pdf
new file mode 120000
index 0000000..34328e2
--- /dev/null
+++ b/TLCL.pdf
@@ -0,0 +1 @@
+.git/annex/objects/jf/3M/MD5E-s2120211--06d1efcb05bb2c55cd039dab3fb28455.pdf/MD5E-
→˓s2120211--06d1efcb05bb2c55cd039dab3fb28455.pdf
\ No newline at end of file
diff --git a/books/TLCL.pdf b/books/TLCL.pdf
deleted file mode 120000
index 4c84b61..0000000
--- a/books/TLCL.pdf
+++ /dev/null

(continues on next page)

14.2. Miscellaneous file system operations 196

The DataLad Handbook, Release 0.12.0+519.g04985082

(continued from previous page)

@@ -1 +0,0 @@
-../.git/annex/objects/jf/3M/MD5E-s2120211--06d1efcb05bb2c55cd039dab3fb28455.pdf/MD5E-
→˓s2120211--06d1efcb05bb2c55cd039dab3fb28455.pdf
\ No newline at end of file

As you can see, this action does not show up as a move, but instead a deletion and addition of a
new file. Why? Because the content that is tracked is the actual symlink, and due to the change
in relative location, the symlink needed to change. Hence, what looks and feels like a move on
the file system for you is actually a move plus a content change for Git.

An additional piece of background information: A datalad save command internally uses a git
commit to save changes to a dataset. git commit in turn triggers a git annex fix command.
This git-annex command fixes up links that have become broken to again point to annexed
content, and is responsible for cleaning up what needs to be cleaned up. Thanks, git-annex!

Therefore, while it might be startling if you’ve moved a file and can not open it directly after-
wards, everything will be rectified by datalad save as well.

Finally, let’s clean up:

$ git reset --hard HEAD~1
HEAD is now at 95dac60 add container and execute analysis within container

Moving files across dataset boundaries

Generally speaking, moving files across dataset hierarchies is not advised. While DataLad blurs
the dataset boundaries to ease working in nested dataset, the dataset boundaries do still exist.
If you move a file from one subdataset into another, or up or down a dataset hierarchy, you will
move it out of the version control it was in (i.e., from one .git directory into a different one).
From the perspective of the first subdataset, the file will be deleted, and from the perspective
of the receiving dataset, the file will be added to the dataset, but straight out of nowhere,
with none of its potential history from its original dataset attached to it. Before moving a file,
consider whether copying it (outlined in the next but one paragraph) might be a more suitable
alternative.

If you are willing to sacrifice208 the file’s history and move it to a different dataset, the procedure
differs between annexed files, and files stored in Git.

For files that Git manages, moving and saving is simple: Move the file, and save the resulting
changes in both affected datasets (this can be done with a recursive save from a top-level
dataset, though).

$ mv notes.txt midterm_project/notes.txt
$ datalad status -r
modified: midterm_project (dataset)
untracked: midterm_project/notes.txt (file)
deleted: notes.txt (file)

$ datalad save -r -m "moved notes.txt from root of top-ds to midterm subds"
add(ok): notes.txt (file)

(continues on next page)

208 Or rather: split – basically, the file is getting a fresh new start. Think of it as some sort of witness-protection
program with complete disrespect for provenance. . .

14.2. Miscellaneous file system operations 197

The DataLad Handbook, Release 0.12.0+519.g04985082

(continued from previous page)

save(ok): midterm_project (dataset)
delete(ok): notes.txt (file)
add(ok): midterm_project (file)
save(ok): . (dataset)
action summary:
add (ok: 2)
delete (ok: 1)
save (notneeded: 2, ok: 2)

Note how the history of notes.txt does not exist in the subdataset – it appears as if the file was
generated at once, instead of successively over the course:

$ cd midterm_project
$ git log notes.txt
commit dbc42541d643bba7db97eadcabe806c61c8c5859
Author: Elena Piscopia <elena@example.net>
Date: Mon Feb 17 08:52:31 2020 +0100

moved notes.txt from root of top-ds to midterm subds

(Undo-ing this requires git resets in both datasets)

in midterm_project
$ git reset --hard HEAD~

in DataLad-101
$ cd ../
$ git reset --hard HEAD~
HEAD is now at c7a17ea [DATALAD RUNCMD] rerun analysis in container
HEAD is now at 95dac60 add container and execute analysis within container

The process is a bit more complex for annexed files. Let’s do it wrong, first: What happens if
we move an annexed file in the same way as notes.txt?

$ mv books/TLCL.pdf midterm_project
$ datalad status -r
deleted: books/TLCL.pdf (symlink)

modified: midterm_project (dataset)
untracked: midterm_project/TLCL.pdf (symlink)

$ datalad save -r -m "move annexed file around"
add(ok): TLCL.pdf (file)
save(ok): midterm_project (dataset)
delete(ok): books/TLCL.pdf (file)
add(ok): midterm_project (file)
save(ok): . (dataset)
action summary:
add (ok: 2)
delete (ok: 1)
save (notneeded: 2, ok: 2)

At this point, this does not look that different to the result of moving notes.txt. Note, though,
that the deleted and untracked PDFs are symlinks – and therein lies the problem: What was
moved was not the file content (which is still in the annex of the top-level dataset, DataLad-101),
but its symlink that was stored in Git. After moving the file, the symlink is broken, and git-annex

14.2. Miscellaneous file system operations 198

The DataLad Handbook, Release 0.12.0+519.g04985082

has no way of finding out where the file content could be:

$ cd midterm_project
$ git annex whereis TLCL.pdf
whereis TLCL.pdf (0 copies) failed
git-annex: whereis: 1 failed

Let’s rewind, and find out how to do it correctly:

$ git reset --hard HEAD~
$ cd ../
$ git reset --hard HEAD~
HEAD is now at c7a17ea [DATALAD RUNCMD] rerun analysis in container
HEAD is now at 95dac60 add container and execute analysis within container

The crucial step to remember is to get the annexed file out of the annex prior to moving it. For
this, we need to fall back to git-annex commands:

$ git annex unlock books/TLCL.pdf
$ mv books/TLCL.pdf midterm_project
$ datalad status -r
unlock books/TLCL.pdf (copying...) ok
deleted: books/TLCL.pdf (symlink)

modified: midterm_project (dataset)
untracked: midterm_project/TLCL.pdf (file)

Afterwards, a (recursive) save commits the removal of the book from DataLad-101, and adds
the file content into the annex of midterm_project:

$ datalad save -r -m "move book into midterm_project"
add(ok): TLCL.pdf (file)
save(ok): midterm_project (dataset)
delete(ok): books/TLCL.pdf (file)
add(ok): midterm_project (file)
save(ok): . (dataset)
action summary:
add (ok: 2)
delete (ok: 1)
save (notneeded: 2, ok: 2)

Even though you did split the file’s history, at least its content is in the correct dataset now:

$ cd midterm_project
$ git annex whereis TLCL.pdf
whereis TLCL.pdf (1 copy)

e60f97df-aaec-46bb-acdc-bf95451126f5 -- me@muninn:~/dl-101/DataLad-101/midterm_
→˓project [here]
ok

But more than showing you how it can be done, if necessary, this paragraph hopefully convinced
you that moving files across dataset boundaries is not convenient. It can be a confusing and
potentially “file-content-losing”-dangerous process, but it also dissociates a file from its prove-
nance that is captured in its previous dataset, with no machine-readable way to learn about
the move easily. A better alternative may be copying files with the datalad copy-file com-
mand introduced in detail in Parallel operations and subsampled datasets using datalad copy-file
(page 347), and demonstrated in the next but one paragraph. Let’s quickly clean up by moving

14.2. Miscellaneous file system operations 199

The DataLad Handbook, Release 0.12.0+519.g04985082

the file back:

in midterm_project
$ git annex unannex TLCL.pdf
unannex TLCL.pdf ok

$ mv TLCL.pdf ../books
$ cd ../
$ datalad save -r -m "move book back from midterm_project"
add(ok): midterm_project (file)
add(ok): books/TLCL.pdf (file)
save(ok): . (dataset)
action summary:
add (ok: 2)
save (notneeded: 3, ok: 1)

Copying files

Let’s create a copy of an annexed file, using the Unix command cp to copy.

$ cp books/TLCL.pdf copyofTLCL.pdf
$ datalad status
untracked: copyofTLCL.pdf (file)

That’s expected. The copy shows up as a new, untracked file. Let’s save it:

$ datalad save -m "add copy of TLCL.pdf"
add(ok): copyofTLCL.pdf (file)
save(ok): . (dataset)
action summary:
add (ok: 1)
save (ok: 1)

$ git log -n 1 -p
commit 9e2951173bcfc2fb9d6f950c6e620ea02bb7fd9a
Author: Elena Piscopia <elena@example.net>
Date: Mon Feb 17 08:52:38 2020 +0100

add copy of TLCL.pdf

diff --git a/copyofTLCL.pdf b/copyofTLCL.pdf
new file mode 120000
index 0000000..34328e2
--- /dev/null
+++ b/copyofTLCL.pdf
@@ -0,0 +1 @@
+.git/annex/objects/jf/3M/MD5E-s2120211--06d1efcb05bb2c55cd039dab3fb28455.pdf/MD5E-
→˓s2120211--06d1efcb05bb2c55cd039dab3fb28455.pdf
\ No newline at end of file

That’s it.

Find out more: Symlinks!

If you have read the additional content in the section Data integrity (page 77), you know that
the same file content is only stored once, and copies of the same file point to the same location

14.2. Miscellaneous file system operations 200

The DataLad Handbook, Release 0.12.0+519.g04985082

in the object tree.

Let’s check that out:

$ ls -l copyofTLCL.pdf
$ ls -l books/TLCL.pdf
lrwxrwxrwx 1 adina adina 128 Feb 17 08:52 copyofTLCL.pdf -> .git/annex/objects/jf/3M/MD5E-
→˓s2120211--06d1efcb05bb2c55cd039dab3fb28455.pdf/MD5E-s2120211--
→˓06d1efcb05bb2c55cd039dab3fb28455.pdf
lrwxrwxrwx 1 adina adina 131 Jan 28 2019 books/TLCL.pdf -> ../.git/annex/objects/jf/3M/
→˓MD5E-s2120211--06d1efcb05bb2c55cd039dab3fb28455.pdf/MD5E-s2120211--
→˓06d1efcb05bb2c55cd039dab3fb28455.pdf

Indeed! Apart from their relative location (.git versus ../.git) their symlink is identical. Thus,
even though two copies of the book exist in your dataset, your disk needs to store it only once.

In most cases, this is just an interesting fun-fact, but beware when dropping content with
datalad drop (Removing annexed content entirely (page 209)): If you drop the content of one
copy of a file, all other copies will lose this content as well.

Finally, let’s clean up:

$ git reset --hard HEAD~1
HEAD is now at 31ee306 move book back from midterm_project

Copying files across dataset boundaries

Note: datalad copy-file requires DataLad version 0.13.0 or higher.

Instead of moving files across dataset boundaries, copying them is an easier and – beginning
with DataLad version 0.13.0 – actually supported method. The DataLad command that can
be used for this is datalad copy-file (datalad-copy-file manual). This command allows to
copy files (from any dataset or non-dataset location, annexed or not annexed) into a dataset. If
the file is copied from a dataset and is annexed, its availability metadata is added to the new
dataset as well, and there is no need for unannex’ing the or even retrieving its file contents.
Let’s see this in action for a file stored in Git, and a file stored in annex:

$ datalad copy-file notes.txt midterm_project -d midterm_project
[INFO] Copying non-annexed file or copy into non-annex dataset: /home/me/dl-101/DataLad-
→˓101/notes.txt -> AnnexRepo(/home/me/dl-101/DataLad-101/midterm_project)
copy_file(ok): /home/me/dl-101/DataLad-101/notes.txt
add(ok): notes.txt (file)
save(ok): . (dataset)
action summary:
add (ok: 1)
copy_file (ok: 1)
save (ok: 1)

$ datalad copy-file books/bash_guide.pdf midterm_project -d midterm_project
copy_file(ok): /home/me/dl-101/DataLad-101/books/bash_guide.pdf [/home/me/dl-101/DataLad-
→˓101/midterm_project/bash_guide.pdf]
save(ok): . (dataset)
action summary:

(continues on next page)

14.2. Miscellaneous file system operations 201

The DataLad Handbook, Release 0.12.0+519.g04985082

(continued from previous page)

copy_file (ok: 1)
save (ok: 1)

Both files have been successfully transferred and saved to the subdataset, and no unannexing
was necessary. Note, though, that notes.txt was annexed in the subdataset, as this subdataset
was not configured with the text2git run procedure.

$ tree midterm_project
midterm_project

bash_guide.pdf -> .git/annex/objects/WF/Gq/MD5E-s1198170--
→˓0ab2c121bcf68d7278af266f6a399c5f.pdf/MD5E-s1198170--0ab2c121bcf68d7278af266f6a399c5f.pdf

CHANGELOG.md
code

README.md
script.py

input
iris.csv -> .git/annex/objects/qz/Jg/MD5E-s3975--341a3b5244f213282b7b0920b729c592.

→˓csv/MD5E-s3975--341a3b5244f213282b7b0920b729c592.csv
notes.txt -> .git/annex/objects/Wz/J2/MD5E-s5457--a55b6d35a8c79406f8301f58dda6dfc3.

→˓txt/MD5E-s5457--a55b6d35a8c79406f8301f58dda6dfc3.txt
pairwise_relationships.png -> .git/annex/objects/xZ/pk/MD5E-s175447--

→˓1f7f416d7c317c1f6208a940aa50c700.png/MD5E-s175447--1f7f416d7c317c1f6208a940aa50c700.png
prediction_report.csv -> .git/annex/objects/VF/27/MD5E-s347--

→˓7d984f53676358222aa7aa55980f205b.csv/MD5E-s347--7d984f53676358222aa7aa55980f205b.csv
README.md

2 directories, 9 files

The subdataset has two new commits as datalad copy-file can take care of saving changes
in the copied-to dataset, and thus the new subdataset state would need to be saved in the
superdataset.

$ datalad status -r
modified: midterm_project (dataset)

Still, just as when we moved files across dataset boundaries, the files’ provenance record is lost:

$ cd midterm_project
$ git log notes.txt
commit 35e8039dc27a13241fc86cd13937a88370f733a5
Author: Elena Piscopia <elena@example.net>
Date: Wed May 6 14:34:16 2020 +0200

[DATALAD] Recorded changes

Nevertheless, copying files with datalad copy-file is easier and safer than moving them with
standard Unix commands, especially so for annexed files. A more detailed introduction to
datalad copy-file and a concrete usecase can currently be found in Parallel operations and
subsampled datasets using datalad copy-file (page 347).

Moving/renaming a subdirectory or subdataset

Moving or renaming subdirectories, especially if they are subdatasets, can be a minefield. But
in principle, a safe way to proceed is using the Unix mv command to move or rename, and the

14.2. Miscellaneous file system operations 202

The DataLad Handbook, Release 0.12.0+519.g04985082

datalad save to clean up afterwards, just as in the examples above. Make sure to not use git
mv, especially for subdatasets.

Let’s for example rename the books directory:

$ mv books/ readings
$ datalad status
untracked: readings (directory)
deleted: books/TLCL.pdf (symlink)
deleted: books/bash_guide.pdf (symlink)
deleted: books/byte-of-python.pdf (symlink)
deleted: books/progit.pdf (symlink)

$ datalad save -m "renamed directory"
delete(ok): books/TLCL.pdf (file)
delete(ok): books/bash_guide.pdf (file)
delete(ok): books/byte-of-python.pdf (file)
delete(ok): books/progit.pdf (file)
add(ok): readings/TLCL.pdf (file)
add(ok): readings/bash_guide.pdf (file)
add(ok): readings/byte-of-python.pdf (file)
add(ok): readings/progit.pdf (file)
save(ok): . (dataset)
action summary:
add (ok: 4)
delete (ok: 4)
save (ok: 1)

This is easy, and complication free. Moving (as in: changing the location, instead of the name)
the directory would work in the same fashion, and a datalad save would fix broken symlinks
afterwards. Let’s quickly clean this up:

$ git reset --hard HEAD~1
HEAD is now at 31ee306 move book back from midterm_project

But let’s now try to move the longnow subdataset into the root of the superdataset:

$ mv recordings/longnow .
$ datalad status
untracked: longnow (directory)
deleted: recordings/longnow (dataset)

$ datalad save -m "moved subdataset"
delete(ok): recordings/longnow (file)
add(ok): longnow (file)
add(ok): .gitmodules (file)
save(ok): . (dataset)
action summary:
add (ok: 2)
delete (ok: 1)
save (ok: 1)

$ datalad status
nothing to save, working tree clean

This seems fine, and it has indeed worked. However, reverting a commit like this is tricky, at the

14.2. Miscellaneous file system operations 203

The DataLad Handbook, Release 0.12.0+519.g04985082

moment. This could lead to trouble if you at a later point try to revert or rebase chunks of your
history including this move. Therefore, if you can, try not to move subdatasets around. For
now we’ll clean up in a somewhat “hacky” way: Reverting, and moving remaining subdataset
contents back to their original place by hand to take care of the unwanted changes the commit
reversal introduced.

$ git reset --hard HEAD~1
warning: unable to rmdir 'longnow': Directory not empty
HEAD is now at 31ee306 move book back from midterm_project

$ mv -f longnow recordings

The take-home message therefore is that it is best not to move subdatasets, but very possible
to move subdirectories if necessary. In both cases, do not attempt moving with the git mv, but
stick with mv and a subsequent datalad save.

Todo: Update this when progress has been made towards https://github.com/datalad/
datalad/issues/3464

Moving/renaming a superdataset

Once created, a DataLad superdataset may not be in an optimal place on your file system, or
have the best name.

After a while, you might think that the dataset would fit much better into /home/user/
research_projects/ than in /home/user/Documents/MyFiles/tmp/datalad-test/. Or maybe
at some point, a long name such as My-very-first-DataLad-project-wohoo-I-am-so-excited
does not look pretty in your terminal prompt anymore, and going for finance-2019 seems more
professional.

These will be situations in which you want to rename or move a superdataset. Will that break
anything?

In all standard situations, no, it will be completely fine. You can use standard Unix commands
such as mv to do it, and also whichever graphical user interface or explorer you may use.

Beware of one thing though: If your dataset either is a sibling or has a sibling with the source
being a path, moving or renaming the dataset will break the linkage between the datasets. This
can be fixed easily though. We can try this in the following hidden section.

Find out more: If a renamed/moved dataset is a sibling. . .

As section DIY configurations (page 108) explains, each sibling is registered in .git/config in
a “submodule” section. Let’s look at how our sibling “roommate” is registered there:

$ cat .git/config
[core]

repositoryformatversion = 0
filemode = true
bare = false
logallrefupdates = true
editor = nano

[annex]

(continues on next page)

14.2. Miscellaneous file system operations 204

https://github.com/datalad/datalad/issues/3464
https://github.com/datalad/datalad/issues/3464

The DataLad Handbook, Release 0.12.0+519.g04985082

(continued from previous page)

uuid = 283818cf-2b07-4a0e-ab28-2d5fcdb947ae
version = 5
backends = MD5E

[submodule "recordings/longnow"]
url = https://github.com/datalad-datasets/longnow-podcasts.git
active = true

[remote "roommate"]
url = ../mock_user/DataLad-101
fetch = +refs/heads/*:refs/remotes/roommate/*
annex-uuid = fa947123-aeb1-4096-9399-a47a5bb50446
annex-ignore = false

[submodule "midterm_project"]
url = /home/me/dl-101/DataLad-101/midterm_project
active = true

[submodule "longnow"]
url = https://github.com/datalad-datasets/longnow-podcasts.git
active = true

As you can see, its “url” is specified as a relative path. Say your room mate’s directory is a
dataset you would want to move. Let’s see what happens if we move the dataset such that the
path does not point to the dataset anymore:

add an intermediate directory
$ cd ../mock_user
$ mkdir onemoredir
move your room mates dataset into this new directory
$ mv DataLad-101 onemoredir

This means that relative to your DataLad-101, your room mates dataset is not at ../mock_user/
DataLad-101 anymore, but in ../mock_user/onemoredir/DataLad-101. The path specified in
the configuration file is thus wrong now.

navigate back into your dataset
$ cd ../DataLad-101
attempt a datalad update
$ datalad update
[INFO] Fetching updates for <Dataset path=/home/me/dl-101/DataLad-101>
[ERROR] Cmd('/usr/lib/git-annex.linux/git') failed due to: exit code(128)
| cmdline: /usr/lib/git-annex.linux/git fetch --progress --prune --recurse-
→˓submodules=no -v roommate
| stderr: 'fatal: '../mock_user/DataLad-101' does not appear to be a git repository
| fatal: Could not read from remote repository.
|
| Please make sure you have the correct access rights
| and the repository exists.' [cmd.py:wait:415] (GitCommandError)

Here we go:

'fatal: '../mock_user/DataLad-101' does not appear to be a git repository
fatal: Could not read from remote repository.

Git seems pretty insistent (given the amount of error messages) that it can not seem to find
a Git repository at the location the .git/config file specified. Luckily, we can provide this
information. Edit the file with an editor of your choice and fix the path from url = ../
mock_user/DataLad-101 to url = ../mock_user/onemoredir/DataLad-101.

14.2. Miscellaneous file system operations 205

The DataLad Handbook, Release 0.12.0+519.g04985082

Below, we are using the stream editor sed204 for this operation.

$ sed -i 's/..\/mock_user\/DataLad-101/..\/mock_user\/onemoredir\/DataLad-101/' .git/
→˓config

This is how the file looks now:

$ cat .git/config
[core]

repositoryformatversion = 0
filemode = true
bare = false
logallrefupdates = true
editor = nano

[annex]
uuid = 283818cf-2b07-4a0e-ab28-2d5fcdb947ae
version = 5
backends = MD5E

[submodule "recordings/longnow"]
url = https://github.com/datalad-datasets/longnow-podcasts.git
active = true

[remote "roommate"]
url = ../mock_user/onemoredir/DataLad-101
fetch = +refs/heads/*:refs/remotes/roommate/*
annex-uuid = fa947123-aeb1-4096-9399-a47a5bb50446
annex-ignore = false

[submodule "midterm_project"]
url = /home/me/dl-101/DataLad-101/midterm_project
active = true

[submodule "longnow"]
url = https://github.com/datalad-datasets/longnow-podcasts.git
active = true

Let’s try to update now:

$ datalad update
[INFO] Fetching updates for <Dataset path=/home/me/dl-101/DataLad-101>
update(ok): . (dataset)

Nice! We fixed it! Therefore, if a dataset you move or rename is known to other datasets from
its path, or identifies siblings with paths, make sure to adjust them in the .git/config file.

To clean up, we’ll redo the move of the dataset and the modification in .git/config.

$ cd ../mock_user && mv onemoredir/DataLad-101 .
$ rm -r onemoredir
$ cd ../DataLad-101 && sed -i 's/..\/mock_user\/onemoredir\/DataLad-101/..\/mock_user\/
→˓DataLad-101/' .git/config

Getting contents out of git-annex

Files in your dataset can either be handled by Git or Git-annex. Self-made or predefined con-
figurations to .gitattributes, defaults, or the --to-git option to datalad save allow you to
control which tool does what on up to single-file basis. Accidentally though, you may give a file

204 https://en.wikipedia.org/wiki/Sed

14.2. Miscellaneous file system operations 206

https://en.wikipedia.org/wiki/Sed

The DataLad Handbook, Release 0.12.0+519.g04985082

of yours to git-annex when it was intended to be stored in Git, or you want to get a previously
annexed file into Git.

Consider you intend to share the cropped .png images you created from the longnow logos.
Would you publish your DataLad-101 dataset so GitHub or GitLab, these files would not be
available to others, because annexed dataset contents can not be published to these services.
Even though you could find a third party service of your choice and publish your dataset and
the annexed data (section Beyond shared infrastructure (page 170) will demonstrate how this
can be done), you’re feeling lazy today. And since it is only two files, and they are quite small,
you decide to store them in Git – this way, the files would be available without configuring an
external data store.

To get contents out of the dataset’s annex you need to unannex them. This is done with the
git-annex command git annex unannex. Let’s see how it works:

$ git annex unannex recordings/*logo_small.jpg
unannex recordings/interval_logo_small.jpg ok
unannex recordings/salt_logo_small.jpg ok

Your dataset’s history records the unannexing of the files.

$ git log -p -n 1
commit b52a71418c9b561ca8571fdfce0b89e634d9b199
Author: Elena Piscopia <elena@example.net>
Date: Mon Feb 17 08:52:42 2020 +0100

content removed from git annex

diff --git a/recordings/interval_logo_small.jpg b/recordings/interval_logo_small.jpg
deleted file mode 120000
index f4d6fd6..0000000
--- a/recordings/interval_logo_small.jpg
+++ /dev/null
@@ -1 +0,0 @@
-../.git/annex/objects/36/jF/MD5E-s100877--0fea9537f9fe255d827e4401a7d539e7.jpg/MD5E-
→˓s100877--0fea9537f9fe255d827e4401a7d539e7.jpg
\ No newline at end of file
diff --git a/recordings/salt_logo_small.jpg b/recordings/salt_logo_small.jpg
deleted file mode 120000
index 55ada0f..0000000
--- a/recordings/salt_logo_small.jpg
+++ /dev/null
@@ -1 +0,0 @@
-../.git/annex/objects/xJ/4G/MD5E-s260607--4e695af0f3e8e836fcfc55f815940059.jpg/MD5E-
→˓s260607--4e695af0f3e8e836fcfc55f815940059.jpg
\ No newline at end of file

Once files have been unannexed, they are “untracked” again, and you can save them into Git,
either by adding a rule to .gitattributes, or with datalad save --to-git:

$ datalad save --to-git -m "save cropped logos to Git" recordings/*jpg
add(ok): recordings/interval_logo_small.jpg (file)
add(ok): recordings/salt_logo_small.jpg (file)
save(ok): . (dataset)
action summary:
add (ok: 2)
save (ok: 1)

14.2. Miscellaneous file system operations 207

The DataLad Handbook, Release 0.12.0+519.g04985082

Deleting (annexed) files/directories

Removing annexed file content from a dataset is possible in two different ways: Either by
removing the file from the current state of the repository (which Git calls the worktree) but
keeping the content in the history of the dataset, or by removing content entirely from a dataset
and its history.

Removing a file, but keeping content in history

An rm <file> or rm -rf <directory> with a subsequent datalad save will remove a file or
directory, and save its removal. The file content however will still be in the history of the dataset,
and the file can be brought back to existence by going back into the history of the dataset or
reverting the removal commit:

download a file
$ datalad download-url -m "Added flower mosaic from wikimedia" \
https://upload.wikimedia.org/wikipedia/commons/a/a5/Flower_poster_2.jpg \
--path flowers.jpg

$ ls -l flowers.jpg
[INFO] Downloading 'https://upload.wikimedia.org/wikipedia/commons/a/a5/Flower_poster_2.
→˓jpg' into '/home/me/dl-101/DataLad-101/flowers.jpg'
download_url(ok): /home/me/dl-101/DataLad-101/flowers.jpg (file)
add(ok): flowers.jpg (file)
save(ok): . (dataset)
action summary:
add (ok: 1)
download_url (ok: 1)
save (ok: 1)

lrwxrwxrwx 1 adina adina 128 Oct 6 2013 flowers.jpg -> .git/annex/objects/7q/9Z/MD5E-
→˓s4487679--3898ef0e3497a89fa1ea74698992bf51.jpg/MD5E-s4487679--
→˓3898ef0e3497a89fa1ea74698992bf51.jpg

removal is easy:
$ rm flowers.jpg

This will lead to a dirty dataset status:

$ datalad status
deleted: flowers.jpg (symlink)

If a removal happened by accident, a git checkout -- flowers.jpg would undo the removal at
this stage. To stick with the removal and clean up the dataset state, datalad save will suffice:

$ datalad save -m "removed file again"
delete(ok): flowers.jpg (file)
save(ok): . (dataset)
action summary:
delete (ok: 1)
save (ok: 1)

This commits the deletion of the file in the dataset’s history. If this commit is reverted, the file
comes back to existence:

14.2. Miscellaneous file system operations 208

The DataLad Handbook, Release 0.12.0+519.g04985082

$ git reset --hard HEAD~1
$ ls
HEAD is now at 92c6f73 Added flower mosaic from wikimedia
books
code
flowers.jpg
midterm_project
notes.txt
recordings

In other words, with an rm and subsequent datalad save, the symlink is removed, but the
content is retained in the history.

Removing annexed content entirely

The command to remove file content entirely and irreversibly from a repository is the datalad
drop command (datalad-drop manual). This command will delete the content stored in the
annex of the dataset, and can be very helpful to make a dataset more lean if the file content
is either irrelevant or can be retrieved from other sources easily. Think about a situation in
which a very large result file is computed by default in some analysis, but is not relevant for
any project, and can thus be removed. Or if only the results of an analysis need to be kept, but
the file contents from its input datasets can be dropped at these input datasets are backed-up
else where. Because the command works on annexed contents, it will drop file content from a
dataset, but it will retain the symlink for this file (as this symlink is stored in Git).

drop can take any number of files. If an entire dataset is specified, all file content in sub-
directories is dropped automatically, but for content in sub-datasets to be dropped, the -r/
--recursive flag has to be included. By default, DataLad will not drop any content that does
not have at least one verified remote copy that the content could be retrieved from again. It is
possible to drop the downloaded image, because thanks to datalad download-url its original
location in the web in known:

$ datalad drop flowers.jpg
drop(ok): /home/me/dl-101/DataLad-101/flowers.jpg (file) [checking https://upload.
→˓wikimedia.org/wikipedia/commons/a/a5/Flower_poster_2.jpg...]

Currently, the file content is gone, but the symlink still exist. Opening the remaining symlink
will fail, but the content can be obtained easily again with datalad get:

$ datalad get flowers.jpg
get(ok): flowers.jpg (file) [from web...]

If a file has no verified remote copies, DataLad will only drop its content if the --nocheck option
is specified. We will demonstrate this by generating a random PDF file:

$ convert xc:none -page Letter a.pdf
$ datalad save -m "add empty pdf"
add(ok): a.pdf (file)
save(ok): . (dataset)
action summary:
add (ok: 1)
save (ok: 1)

DataLad will safeguard dropping content that it can not retrieve again:

14.2. Miscellaneous file system operations 209

The DataLad Handbook, Release 0.12.0+519.g04985082

$ datalad drop a.pdf
[WARNING] Running drop resulted in stderr output: git-annex: drop: 1 failed

[ERROR] unsafe; Could only verify the existence of 0 out of 1 necessary copies; Rather␣
→˓than dropping this file, try using: git annex move; (Use --force to override this check,
→˓ or adjust numcopies.) [drop(/home/me/dl-101/DataLad-101/a.pdf)]
drop(error): /home/me/dl-101/DataLad-101/a.pdf (file) [unsafe; Could only verify the␣
→˓existence of 0 out of 1 necessary copies; Rather than dropping this file, try using:␣
→˓git annex move; (Use --force to override this check, or adjust numcopies.)]

But with the --nocheck flag it will work:

$ datalad drop --nocheck a.pdf
drop(ok): /home/me/dl-101/DataLad-101/a.pdf (file)

Note though that this file content is irreversibly gone now, and even going back in time in the
history of the dataset will not bring it back into existence.

Finally, let’s clean up:

$ git reset --hard HEAD~2
HEAD is now at b96ba14 save cropped logos to Git

Deleting content stored in Git

It is much harder to delete dataset content that is stored in Git compared to content stored in
git-annex. Operations such as rm or git rm remove the file from the worktree, but not from its
history, and they can be brought back to life just as annexed contents that were solely rm’ed.
There is also no straightforward Git equivalent of drop. To accomplish a complete removal of
a file from a dataset, we recommend the external tool git-filter-repo205. It is a powerful and
potentially very dangerous tool to rewrite Git history.

Usually, removing files stored in Git completely is not a common or recommended operation,
as it involves quite aggressive rewriting of the dataset history. Sometimes, however, sensitive
files, for example private SSH keys or passwords, or too many or too large files are accidentally
saved into Git, and need to get out of the dataset history. The command git-filter-repo
<path-specification> --force will “filter-out”, i.e., remove all files but the ones specified
in <path-specification> from the datasets history. The section Fixing up too-large datasets
(page 280) shows an example invocation. If you want to use it, however, make sure to attempt
it in a dataset clone or with its --dry-run flag first. It is easy to loose dataset history and files
with this tool.

Uninstalling or deleting subdatasets

Depending on the exact aim, two commands are of relevance for deleting a DataLad subdataset.
The softer (and not so much “deleting” version) is to uninstall a dataset with the datalad
uninstall (datalad-uninstall manual). This command can be used to uninstall any number
of subdatasets. Note though that only subdatasets can be uninstalled; the command will error if
given a sub-directory, a file, or a top-level dataset.

205 https://github.com/newren/git-filter-repo

14.2. Miscellaneous file system operations 210

https://github.com/newren/git-filter-repo

The DataLad Handbook, Release 0.12.0+519.g04985082

clone a subdataset - the content is irrelevant, so why not a cloud :)
$ datalad clone -d . \
https://github.com/datalad-datasets/disneyanimation-cloud.git \
cloud
[INFO] Cloning https://github.com/datalad-datasets/disneyanimation-cloud.git [1 other␣
→˓candidates] into '/home/me/dl-101/DataLad-101/cloud'
[INFO] Remote origin not usable by git-annex; setting annex-ignore
add(ok): cloud (file)
add(ok): .gitmodules (file)
save(ok): . (dataset)
install(ok): cloud (dataset)
action summary:
add (ok: 2)
install (ok: 1)
save (ok: 1)

To uninstall the dataset, use

$ datalad uninstall cloud
uninstall(ok): cloud (dataset)
action summary:
drop (notneeded: 1)
uninstall (ok: 1)

Note that the dataset is still known in the dataset, and not completely removed. A datalad get
[-n/--no-data] cloud would install the dataset again.

In case one wants to fully delete a subdataset from a dataset, the datalad remove command
(datalad-remove manual) is relevant209. It needs a pointer to the root of the superdataset
with the -d/--dataset flag, a path to the subdataset to be removed, and optionally a commit
message (-m/--message) or recursive specification (-r/--recursive). To remove a subdataset,
we will install the uninstalled subdataset again, and subsequently remove it with the datalad
remove command:

$ datalad get -n cloud
delete the subdataset
$ datalad remove -m "remove obsolete subds" -d . cloud
[INFO] Cloning https://github.com/datalad-datasets/disneyanimation-cloud.git [1 other␣
→˓candidates] into '/home/me/dl-101/DataLad-101/cloud'
[INFO] Remote origin not usable by git-annex; setting annex-ignore
install(ok): /home/me/dl-101/DataLad-101/cloud (dataset) [Installed subdataset in order␣
→˓to get /home/me/dl-101/DataLad-101/cloud]
uninstall(ok): cloud (dataset)
remove(ok): cloud (dataset)
save(ok): . (dataset)
action summary:
drop (notneeded: 1)
remove (ok: 1)
save (ok: 1)
uninstall (ok: 1)

Note that for both commands a pointer to the current directory will not work. datalad remove
. or datalad uninstall . will fail, even if the command is executed in a subdataset instead of
the top-level superdataset – you need to execute the command from a higher-level directory.

209 This is indeed the only case in which datalad remove is relevant. For all other cases of content deletion a
normal rm with a subsequent datalad save works best.

14.2. Miscellaneous file system operations 211

The DataLad Handbook, Release 0.12.0+519.g04985082

Finally, after this last piece of information, let’s clean up:

$ git reset --hard HEAD~2
HEAD is now at b96ba14 save cropped logos to Git

Deleting a superdataset

If for whatever reason you at one point tried to remove a DataLad dataset, whether with a GUI
or the command line call rm -rf <directory>, you likely have seen permission denied errors
such as

rm: cannot remove '<directory>/.git/annex/objects/Mz/M1/MD5E-s422982--
→˓2977b5c6ea32de1f98689bc42613aac7.jpg/MD5E-s422982--2977b5c6ea32de1f98689bc42613aac7.jpg
→˓': Permission denied
rm: cannot remove '<directory>/.git/annex/objects/FP/wv/MD5E-s543180--
→˓6209797211280fc0a95196b0f781311e.jpg/MD5E-s543180--6209797211280fc0a95196b0f781311e.jpg
→˓': Permission denied
[...]

This error indicates that there is write-protected content within .git that cannot not be deleted.
What is this write-protected content? It’s the file content stored in the object tree of git-annex.
If you want, you can re-read the section on Data integrity (page 77) to find out how git-annex
revokes write permission for the user to protect the file content given to it. To remove a dataset
with annexed content one has to regain write permissions to everything in the dataset. This is
done with the chmod206 command:

chmod -R u+w <dataset>

This recursively (-R, i.e., throughout all files and (sub)directories) gives users (u) write permis-
sions (+w) for the dataset.

Afterwards, rm -rf <dataset> will succeed.

However, instead of rm -rf, a faster way to remove a dataset is using datalad remove: Run
datalad remove <dataset> outside of the superdataset to remove a top-level dataset with all
its contents. Likely, both --nocheck and --recursive flags are necessary to remove content that
does not have verified remotes, and to traverse into subdatasets.

Be aware though that both ways to delete a dataset will irretrievably delete the dataset, it’s
contents, and it’s history.

Summary

To sum up, file system management operations are safe and easy. Even if you are currently con-
fused about one or two operations, worry not – the take-home-message is simple: Use datalad
save whenever you move or rename files. Be mindful that a datalad status can appear unintu-
itive or that symlinks can break if annexed files are moved, but all of these problems are solved
after a datalad save command. Apart from this command, having a clean dataset status prior
to doing anything is your friend as well. It will make sure that you have a neat and organized
commit history, and no accidental commits of changes unrelated to your file system manage-
ment operations. The only operation you should beware of is moving subdatasets around – this

206 https://en.wikipedia.org/wiki/Chmod

14.2. Miscellaneous file system operations 212

https://en.wikipedia.org/wiki/Chmod

The DataLad Handbook, Release 0.12.0+519.g04985082

can be a minefield. With all of these experiences and tips, you feel confident that you know
how to handle your datasets files and directories well and worry-free.

14.3 Back and forth in time

Almost everyone inadvertently deleted or overwrote files at some point with a hasty operation
that caused data fatalities or at least troubles to re-obtain or restore data. With DataLad, no
mistakes are forever: One powerful feature of datasets is the ability to revert data to a previous
state and thus view earlier content or correct mistakes. As long as the content was version
controlled (i.e., tracked), it is possible to look at previous states of the data, or revert changes –
even years after they happened – thanks to the underlying version control system Git.

To get a glimpse into how to work with the history of a dataset, today’s lecture has an external
Git-expert as a guest lecturer. “I do not have enough time to go through all the details in only
one lecture. But I’ll give you the basics, and an idea of what is possible. Always remember:
Just google what you need. You will find thousands of helpful tutorials or questions on Stack
Overflow210 right away. Even experts will constantly seek help to find out which Git command
to use, and how to use it.”, he reassures with a wink.

The basis of working with the history is to look at it with tools such as tig, gitk, or simply the
git log command. The most important information in an entry (commit) in the history is the
shasum (or hash) associated with it. This hash is how dataset modifications in the history are
identified, and with this hash you can communicate with DataLad or Git about these modifi-
cations or version states214. Here is an excerpt from the DataLad-101 history to show a few
abbreviated hashes of the 15 most recent commits215:

210 https://stackoverflow.com
214 For example, the datalad rerun command introduced in section DataLad, Re-Run! (page 56) takes such a hash

as an argument, and re-executes the datalad run or datalad rerun run record associated with this hash. Likewise,
the git diff can work with commit hashes.

215 There are other alternatives to reference commits in the history of a dataset, for example “counting” ancestors
of the most recent commit using the notation HEAD~2, HEAD^2 or HEAD@{2}. However, using hashes to reference
commits is a very fail-save method and saves you from accidentally miscounting.

14.3. Back and forth in time 213

https://stackoverflow.com
https://stackoverflow.com

The DataLad Handbook, Release 0.12.0+519.g04985082

$ git log -15 --oneline
b96ba14 save cropped logos to Git
b52a714 content removed from git annex
31ee306 move book back from midterm_project
3168683 move book into midterm_project
95dac60 add container and execute analysis within container
c6845ba finished my midterm project
b4d076f [DATALAD] Recorded changes
a19873b add note on DataLad's procedures
64f886c add note on configurations and git config
ad4fc86 Add note on adding siblings
7462696 Merge remote-tracking branch 'refs/remotes/roommate/master'
1639278 Include nesting demo from datalad website
0ef8c62 add note about datalad update
e5df2d8 add note on git annex whereis
80c31dc add note about cloning from paths and recursive datalad get

“I’ll let you people direct this lecture”, the guest lecturer proposes. “You tell me what you would
be interested in doing, and I’ll show you how it’s done. For the rest of the lecture, call me
Google!”

Fixing (empty) commit messages

From the back of the lecture hall comes a question you’re really glad someone asked: “It has
happened to me that I accidentally did a datalad save and forgot to specify the commit mes-
sage, how can I fix this?”. The room nods in agreement – apparently, others have run into this
premature slip of the Enter key as well.

Let’s demonstrate a simple example. First, let’s create some random files. Do this right in your
dataset.

$ cat << EOT > Gitjoke1.txt
Git knows what you did last summer!
EOT

$ cat << EOT > Gitjoke2.txt
Knock knock. Who's there? Git.
Git-who?
Sorry, 'who' is not a git command - did you mean 'show'?
EOT

$ cat << EOT > Gitjoke3.txt
In Soviet Russia, git commits YOU!
EOT

This will generate three new files in your dataset. Run a datalad status to verify this:

$ datalad status
untracked: Gitjoke1.txt (file)
untracked: Gitjoke2.txt (file)
untracked: Gitjoke3.txt (file)

And now:

14.3. Back and forth in time 214

The DataLad Handbook, Release 0.12.0+519.g04985082

$ datalad save
add(ok): Gitjoke1.txt (file)
add(ok): Gitjoke2.txt (file)
add(ok): Gitjoke3.txt (file)
save(ok): . (dataset)
action summary:
add (ok: 3)
save (ok: 1)

Whooops! A datalad save without a commit message that saved all of the files.

$ git log -p -1
commit b07afbce9dc01f43a27b9b16562ebfb4cb11a1bd
Author: Elena Piscopia <elena@example.net>
Date: Mon Feb 17 08:53:01 2020 +0100

[DATALAD] Recorded changes

diff --git a/Gitjoke1.txt b/Gitjoke1.txt
new file mode 100644
index 0000000..d7e1359
--- /dev/null
+++ b/Gitjoke1.txt
@@ -0,0 +1 @@
+Git knows what you did last summer!
diff --git a/Gitjoke2.txt b/Gitjoke2.txt
new file mode 100644
index 0000000..51beecb
--- /dev/null
+++ b/Gitjoke2.txt
@@ -0,0 +1,3 @@
+Knock knock. Who's there? Git.
+Git-who?
+Sorry, 'who' is not a git command - did you mean 'show'?
diff --git a/Gitjoke3.txt b/Gitjoke3.txt
new file mode 100644
index 0000000..7b83d95
--- /dev/null
+++ b/Gitjoke3.txt
@@ -0,0 +1 @@
+In Soviet Russia, git commits YOU!

As expected, all of the modifications present prior to the command are saved into the most
recent commit, and the commit message DataLad provides by default, [DATALAD] Recorded
changes, is not very helpful.

Changing the commit message of the most recent commit can be done with the command git
commit --amend. Running this command will open an editor (the default, as configured in Git),
and allow you to change the commit message.

Try running the git commit --amend command right now and give the commit a new commit
message (you can just delete the one created by DataLad in the editor)!

14.3. Back and forth in time 215

The DataLad Handbook, Release 0.12.0+519.g04985082

Find out more

Changing the commit messages of not-the-most-recent commits
The git commit --amend commands will let you rewrite the commit message of the most
recent commit. If you however need to rewrite commit messages of older commits, you
can do so during a so-called “interactive rebase”217. The command for this is

$ git rebase -i HEAD~N

where N specifies how far back you want to rewrite commits. git rebase -i HEAD~3 for
example lets you apply changes to the any number of commit messages within the last
three commits.

Note: Be aware that an interactive rebase lets you rewrite history. This can lead to
confusion or worse if the history you are rewriting is shared with others, e.g., in a col-
laborative project. Be also aware that rewriting history that is pushed/published (e.g., to
GitHub) will require a force-push!

Running this command gives you a list of the N most recent commits in your text editor
(which may be vim!), sorted with the most recent commit on the bottom. This is how it
may look like:

pick 8503f26 Add note on adding siblings
pick 23f0a52 add note on configurations and git config
pick c42cba4 add note on DataLad's procedures

Rebase b259ce8..c42cba4 onto b259ce8 (3 commands)
#
Commands:
p, pick <commit> = use commit
r, reword <commit> = use commit, but edit the commit message
e, edit <commit> = use commit, but stop for amending
s, squash <commit> = use commit, but meld into previous commit
f, fixup <commit> = like "squash", but discard this commit's log message
x, exec <command> = run command (the rest of the line) using shell
b, break = stop here (continue rebase later with 'git rebase --continue')
d, drop <commit> = remove commit
l, label <label> = label current HEAD with a name

An interactive rebase allows to apply various modifying actions to any number of commits
in the list. Below the list are descriptions of these different actions. Among them is
“reword”, which lets you “edit the commit message”. To apply this action and reword
the top-most commit message in this list (8503f26 Add note on adding siblings, three
commits back in the history), exchange the word pick in the beginning of the line with
the word reword or simply r like this:

r 8503f26 Add note on adding siblings

If you want to reword more than one commit message, exchange several picks. Any
commit with the word pick at the beginning of the line will be kept as is. Once you are
done, save and close the editor. This will sequentially open up a new editor for each
commit you want to reword. In it, you will be able to change the commit message. Save
to proceed to the next commit message until the rebase is complete. But be careful not
to delete any lines in the above editor view – An interactive rebase can be dangerous,
and if you remove a line, this commit will be lost!218

14.3. Back and forth in time 216

The DataLad Handbook, Release 0.12.0+519.g04985082

217 Note though that rewriting history can be dangerous, and you should be aware of what you are doing.
For example, rewriting parts of the dataset’s history that have been published (e.g., to a GitHub repository)
already or that other people have copies of, is not advised.

218 When in need to interactively rebase, please consult further documentation and tutorials. It is out of
the scope of this handbook to be a complete guide on rebasing, and not all interactive rebasing operations
are complication-free. However, you can always undo mistakes that occur during rebasing with the help of
the reflog219.

Untracking accidentally saved contents (tracked in Git)

The next question comes from the front: “It happened that I forgot to give a path to the datalad
save command when I wanted to only start tracking a very specific file. Other times I just didn’t
remember that additional, untracked files existed in the dataset and saved unaware of those.
I know that it is good practice to only save those changes together that belong together, so is
there a way to disentangle an accidental datalad save again?”

Let’s say instead of saving all three previously untracked Git jokes you intended to save only
one of those files. What we want to achieve is to keep all of the files and their contents in the
dataset, but get them out of the history into an untracked state again, and save them individually
afterwards.

Important: Note that this is a case with text files (stored in Git)! For accidental annexing of
files, please make sure to check out the next paragraph!

This is a task for the git reset command. It essentially allows to undo commits by resetting the
history of a dataset to an earlier version. git reset comes with several modes that determine
the exact behavior it, but the relevant one for this aim is --mixed216. Specifying the command:

git reset --mixed COMMIT

will preserve all changes made to files until the specified commit in the dataset, but remove
them from the datasets history. This means the commits until COMMIT (not including COMMIT) will
not be in your history anymore, and instead “untracked files” or “unsaved changes”. In other
words, the modifications you made in these commits that are “undone” will still be present in
your dataset – just not written to the history anymore. Let’s try this to get a feel for it.

The COMMIT in the command can either be a hash or a reference with the HEAD pointer.

Find out more

Git terminology: branches and HEADs?
A Git repository (and thus any DataLad dataset) is built up as a tree of commits. A branch
is a named pointer (reference) to a commit, and allows you to isolate developments. The
default branch is called master. HEAD is a pointer to the branch you are currently on, and
thus to the last commit in the given branch.

216 The option --mixed is the default mode for a git reset command, omitting it (i.e., running just git reset)
leads to the same behavior. It is explicitly stated in this book to make the mode clear, though.

14.3. Back and forth in time 217

https://git-scm.com/docs/git-reflog

The DataLad Handbook, Release 0.12.0+519.g04985082

Using HEAD, you can identify the most recent commit, or count backwards starting from
the most recent commit. HEAD~1 is the ancestor of the most recent commit, i.e., one
commit back (f30ab in the figure above). Apart from the notation HEAD~N, there is also
HEAD^N used to count backwards, but less frequently used and of importance primarily in
the case of merge commits. This post211 explains the details well.

211 https://stackoverflow.com/questions/2221658/whats-the-difference-between-head-and-head-in-git

Let’s stay with the hash, and reset to the commit prior to saving the Gitjokes.

First, find out the shasum, and afterwards, reset it.

$ git log -n 3 --oneline
b07afbc [DATALAD] Recorded changes
b96ba14 save cropped logos to Git
b52a714 content removed from git annex

$ git reset --mixed b96ba145e614e6fa12f2dae9bf9260ee8678ca5d

Let’s see what has happened. First, let’s check the history:

$ git log -n 2 --oneline
b96ba14 save cropped logos to Git
b52a714 content removed from git annex

As you can see, the commit in which the jokes were tracked is not in the history anymore! Go
on to see what datalad status reports:

14.3. Back and forth in time 218

https://stackoverflow.com/questions/2221658/whats-the-difference-between-head-and-head-in-git

The DataLad Handbook, Release 0.12.0+519.g04985082

$ datalad status
untracked: Gitjoke1.txt (file)
untracked: Gitjoke2.txt (file)
untracked: Gitjoke3.txt (file)

Nice, the files are present, and untracked again. Do they contain the content still? We will read
all of them with cat:

$ cat Gitjoke*
Git knows what you did last summer!
Knock knock. Who's there? Git.
Git-who?
Sorry, 'who' is not a git command - did you mean 'show'?
In Soviet Russia, git commits YOU!

Great. Now we can go ahead and save only the file we intended to track:

$ datalad save -m "save my favorite Git joke" Gitjoke2.txt
add(ok): Gitjoke2.txt (file)
save(ok): . (dataset)
action summary:
add (ok: 1)
save (ok: 1)

Finally, let’s check how the history looks afterwards:

$ git log -2
commit 2996ac291b15780dd9a255dc7f162d07e21d9294
Author: Elena Piscopia <elena@example.net>
Date: Mon Feb 17 08:53:02 2020 +0100

save my favorite Git joke

commit b96ba145e614e6fa12f2dae9bf9260ee8678ca5d
Author: Elena Piscopia <elena@example.net>
Date: Mon Feb 17 08:52:42 2020 +0100

save cropped logos to Git

Wow! You have rewritten history217 !

Untracking accidentally saved contents (stored in git-annex)

The previous git reset undid the tracking of text files. However, those files are stored in Git,
and thus their content is also stored in Git. Files that are annexed, however, have their content
stored in git-annex, and not the file itself is stored in the history, but a symlink pointing to
the location of the file content in the dataset’s annex. This has consequences for a git reset
command: Reverting a save of a file that is annexed would revert the save of the symlink into
Git, but it will not revert the annexing of the file. Thus, what will be left in the dataset is an
untracked symlink.

To undo an accidental save of that annexed a file, the annexed file has to be “unlocked” first
with a datalad unlock command.

14.3. Back and forth in time 219

The DataLad Handbook, Release 0.12.0+519.g04985082

We will simulate such a situation by creating a PDF file that gets annexed with an accidental
datalad save:

create an empty pdf file
$ convert xc:none -page Letter apdffile.pdf
accidentally save it
$ datalad save
add(ok): Gitjoke1.txt (file)
add(ok): Gitjoke3.txt (file)
add(ok): apdffile.pdf (file)
save(ok): . (dataset)
action summary:
add (ok: 3)
save (ok: 1)

This accidental save has thus added both text files stored in Git, but also a PDF file to the history
of the dataset. As an ls -l reveals, the PDF file has been annexed and is thus a symlink:

$ ls -l apdffile.pdf
lrwxrwxrwx 1 adina adina 122 Feb 17 08:53 apdffile.pdf -> .git/annex/objects/xg/GF/MD5E-
→˓s1842--c4613feb0218f5589ccf5de9fd5a7d7c.pdf/MD5E-s1842--
→˓c4613feb0218f5589ccf5de9fd5a7d7c.pdf

Prior to resetting, the PDF file has to be unannexed. To unannex files, i.e., get the contents out
of the object tree, the datalad unlock command is relevant:

$ datalad unlock apdffile.pdf
unlock(ok): apdffile.pdf (file)

The file is now no longer symlinked:

$ ls -l apdffile.pdf
-rw-r--r-- 1 adina adina 1842 Feb 17 08:53 apdffile.pdf

Finally, git reset --mixed can be used to revert the accidental save. Again, find out the shasum
first, and afterwards, reset it.

$ git log -n 3 --oneline
e1bb29d [DATALAD] Recorded changes
2996ac2 save my favorite Git joke
b96ba14 save cropped logos to Git

$ git reset --mixed 2996ac291b15780dd9a255dc7f162d07e21d9294

To see what has happened, let’s check the history:

$ git log -n 2 --oneline
2996ac2 save my favorite Git joke
b96ba14 save cropped logos to Git

. . . and also the status of the dataset:

$ datalad status
untracked: Gitjoke1.txt (file)
untracked: Gitjoke3.txt (file)
untracked: apdffile.pdf (file)

14.3. Back and forth in time 220

The DataLad Handbook, Release 0.12.0+519.g04985082

The accidental save has been undone, and the file is present as untracked content again. As
before, this action has not been recorded in your history.

Viewing previous versions of files and datasets

The next question is truly magical: How does one see data as it was at a previous state in
history?

This magic trick can be performed with the git checkout. It is a very heavily used command
for various tasks, but among many it can send you back in time to view the state of a dataset at
the time of a specific commit.

Let’s say you want to find out which notes you took in the first few chapters of the handbook.
Find a commit shasum in your history to specify the point in time you want to go back to:

$ git log -n 20 --oneline
2996ac2 save my favorite Git joke
b96ba14 save cropped logos to Git
b52a714 content removed from git annex
31ee306 move book back from midterm_project
3168683 move book into midterm_project
95dac60 add container and execute analysis within container
c6845ba finished my midterm project
b4d076f [DATALAD] Recorded changes
a19873b add note on DataLad's procedures
64f886c add note on configurations and git config
ad4fc86 Add note on adding siblings
7462696 Merge remote-tracking branch 'refs/remotes/roommate/master'
1639278 Include nesting demo from datalad website
0ef8c62 add note about datalad update
e5df2d8 add note on git annex whereis
80c31dc add note about cloning from paths and recursive datalad get
a1f2c3f add note on clean datasets
baf4fc5 [DATALAD RUNCMD] Resize logo for slides
a84115d [DATALAD RUNCMD] Resize logo for slides
66b01ae add additional notes on run options

Let’s go 15 commits back in time:

$ git checkout a1f2c3f97f0d7236a741ce074d8136eca23dd53f
warning: unable to rmdir 'midterm_project': Directory not empty
Note: switching to 'a1f2c3f97f0d7236a741ce074d8136eca23dd53f'.

You are in 'detached HEAD' state. You can look around, make experimental
changes and commit them, and you can discard any commits you make in this
state without impacting any branches by switching back to a branch.

If you want to create a new branch to retain commits you create, you may
do so (now or later) by using -c with the switch command. Example:

git switch -c <new-branch-name>

Or undo this operation with:

git switch -

(continues on next page)

14.3. Back and forth in time 221

The DataLad Handbook, Release 0.12.0+519.g04985082

(continued from previous page)

Turn off this advice by setting config variable advice.detachedHead to false

HEAD is now at a1f2c3f add note on clean datasets

How did your notes.txt file look at this point?

$ cat notes.txt
One can create a new dataset with 'datalad create [--description] PATH'.
The dataset is created empty

The command "datalad save [-m] PATH" saves the file
(modifications) to history. Note to self:
Always use informative, concise commit messages.

The command 'datalad clone URL/PATH [PATH]'
installs a dataset from e.g., a URL or a path.
If you install a dataset into an existing
dataset (as a subdataset), remember to specify the
root of the superdataset with the '-d' option.

There are two useful functions to display changes between two
states of a dataset: "datalad diff -f/--from COMMIT -t/--to COMMIT"
and "git diff COMMIT COMMIT", where COMMIT is a shasum of a commit
in the history.

The datalad run command can record the impact a script or command has on a Dataset.
In its simplest form, datalad run only takes a commit message and the command that
should be executed.

Any datalad run command can be re-executed by using its commit shasum as an argument
in datalad rerun CHECKSUM. DataLad will take information from the run record of the␣
→˓original
commit, and re-execute it. If no changes happen with a rerun, the command will not be␣
→˓written
to history. Note: you can also rerun a datalad rerun command!

You should specify all files that a command takes as input with an -i/--input flag. These
files will be retrieved prior to the command execution. Any content that is modified or
produced by the command should be specified with an -o/--output flag. Upon a run or rerun
of the command, the contents of these files will get unlocked so that they can be␣
→˓modified.

Important! If the dataset is not "clean" (a datalad status output is empty),
datalad run will not work - you will have to save modifications present in your
dataset.
A suboptimal alternative is the --explicit flag,
used to record only those changes done
to the files listed with --output flags.

Neat, isn’t it? By checking out a commit shasum you can explore a previous state of a datasets
history. And this does not only apply to simple text files, but every type of file in your dataset,
regardless of size. The checkout command however led to something that Git calls a “detached
HEAD state”. While this sounds scary, a git checkout master will bring you back into the most
recent version of your dataset and get you out of the “detached HEAD state”:

14.3. Back and forth in time 222

The DataLad Handbook, Release 0.12.0+519.g04985082

$ git checkout master
Previous HEAD position was a1f2c3f add note on clean datasets
Switched to branch 'master'

Note one very important thing: The previously untracked files are still there.

$ datalad status
untracked: Gitjoke1.txt (file)
untracked: Gitjoke3.txt (file)
untracked: apdffile.pdf (file)

The contents of notes.txt will now be the most recent version again:

$ cat notes.txt
One can create a new dataset with 'datalad create [--description] PATH'.
The dataset is created empty

The command "datalad save [-m] PATH" saves the file
(modifications) to history. Note to self:
Always use informative, concise commit messages.

The command 'datalad clone URL/PATH [PATH]'
installs a dataset from e.g., a URL or a path.
If you install a dataset into an existing
dataset (as a subdataset), remember to specify the
root of the superdataset with the '-d' option.

There are two useful functions to display changes between two
states of a dataset: "datalad diff -f/--from COMMIT -t/--to COMMIT"
and "git diff COMMIT COMMIT", where COMMIT is a shasum of a commit
in the history.

The datalad run command can record the impact a script or command has on a Dataset.
In its simplest form, datalad run only takes a commit message and the command that
should be executed.

Any datalad run command can be re-executed by using its commit shasum as an argument
in datalad rerun CHECKSUM. DataLad will take information from the run record of the␣
→˓original
commit, and re-execute it. If no changes happen with a rerun, the command will not be␣
→˓written
to history. Note: you can also rerun a datalad rerun command!

You should specify all files that a command takes as input with an -i/--input flag. These
files will be retrieved prior to the command execution. Any content that is modified or
produced by the command should be specified with an -o/--output flag. Upon a run or rerun
of the command, the contents of these files will get unlocked so that they can be␣
→˓modified.

Important! If the dataset is not "clean" (a datalad status output is empty),
datalad run will not work - you will have to save modifications present in your
dataset.
A suboptimal alternative is the --explicit flag,
used to record only those changes done
to the files listed with --output flags.

(continues on next page)

14.3. Back and forth in time 223

The DataLad Handbook, Release 0.12.0+519.g04985082

(continued from previous page)

A source to install a dataset from can also be a path,
for example as in "datalad clone ../DataLad-101".

Just as in creating datasets, you can add a
description on the location of the new dataset clone
with the -D/--description option.

Note that subdatasets will not be installed by default,
but are only registered in the superdataset -- you will
have to do a "datalad get -n PATH/TO/SUBDATASET"
to install the subdataset for file availability meta data.
The -n/--no-data options prevents that file contents are
also downloaded.

Note that a recursive "datalad get" would install all further
registered subdatasets underneath a subdataset, so a safer
way to proceed is to set a decent --recursion-limit:
"datalad get -n -r --recursion-limit 2 <subds>"

The command "git annex whereis PATH" lists the repositories that have
the file content of an annexed file. When using "datalad get" to retrieve
file content, those repositories will be queried.

To update a shared dataset, run the command "datalad update --merge".
This command will query its origin for changes, and integrate the
changes into the dataset.

To update from a dataset with a shared history, you
need to add this dataset as a sibling to your dataset.
"Adding a sibling" means providing DataLad with info about
the location of a dataset, and a name for it. Afterwards,
a "datalad update --merge -s name" will integrate the changes
made to the sibling into the dataset.
A safe step in between is to do a "datalad update -s name"
and checkout the changes with "git/datalad diff"
to remotes/origin/master

Configurations for datasets exist on different levels
(systemwide, global, and local), and in different types
of files (not version controlled (git)config files, or
version controlled .datalad/config, .gitattributes, or
gitmodules files), or environment variables.
With the exception of .gitattributes, all configuration
files share a common structure, and can be modified with
the git config command, but also with an editor by hand.

Depending on whether a configuration file is version
controlled or not, the configurations will be shared together
with the dataset. More specific configurations and not-shared
configurations will always take precedence over more global or
shared configurations, and environment variables take precedence
over configurations in files.

The git config --list --show-origin command is a useful tool
to give an overview over existing configurations. Particularly
important may be the .gitattributes file, in which one can set

(continues on next page)

14.3. Back and forth in time 224

The DataLad Handbook, Release 0.12.0+519.g04985082

(continued from previous page)

rules for git-annex about which files should be version-controlled
with Git instead of being annexed.

It can be useful to use pre-configured procedures that can apply
configurations, create files or file hierarchies, or perform
arbitrary tasks in datasets. They can be shipped with DataLad,
its extensions, or datasets, and you can even write your own
procedures and distribute them. The "datalad run-procedure"
command is used to apply such a procedure to a dataset. Procedures
shipped with DataLad or its extensions starting with a "cfg" prefix
can also be applied at the creation of a dataset with
"datalad create -c <PROC-NAME> <PATH>" (omitting the "cfg" prefix).

. . . Wow! You traveled back and forth in time! But an even more magical way to see the
contents of files in previous versions is Git’s cat-file command: Among many other things, it
lets you read a file’s contents as of any point in time in the history, without a prior git checkout:

$ git cat-file --textconv a1f2c3f97f0d7236a741ce074d8136eca23dd53f:notes.txt
One can create a new dataset with 'datalad create [--description] PATH'.
The dataset is created empty

The command "datalad save [-m] PATH" saves the file
(modifications) to history. Note to self:
Always use informative, concise commit messages.

The command 'datalad clone URL/PATH [PATH]'
installs a dataset from e.g., a URL or a path.
If you install a dataset into an existing
dataset (as a subdataset), remember to specify the
root of the superdataset with the '-d' option.

There are two useful functions to display changes between two
states of a dataset: "datalad diff -f/--from COMMIT -t/--to COMMIT"
and "git diff COMMIT COMMIT", where COMMIT is a shasum of a commit
in the history.

The datalad run command can record the impact a script or command has on a Dataset.
In its simplest form, datalad run only takes a commit message and the command that
should be executed.

Any datalad run command can be re-executed by using its commit shasum as an argument
in datalad rerun CHECKSUM. DataLad will take information from the run record of the␣
→˓original
commit, and re-execute it. If no changes happen with a rerun, the command will not be␣
→˓written
to history. Note: you can also rerun a datalad rerun command!

You should specify all files that a command takes as input with an -i/--input flag. These
files will be retrieved prior to the command execution. Any content that is modified or
produced by the command should be specified with an -o/--output flag. Upon a run or rerun
of the command, the contents of these files will get unlocked so that they can be␣
→˓modified.

Important! If the dataset is not "clean" (a datalad status output is empty),
datalad run will not work - you will have to save modifications present in your

(continues on next page)

14.3. Back and forth in time 225

The DataLad Handbook, Release 0.12.0+519.g04985082

(continued from previous page)

dataset.
A suboptimal alternative is the --explicit flag,
used to record only those changes done
to the files listed with --output flags.

The cat-file command is very versatile, and it’s documentation212 will list all of its functionality.
To use it to see the contents of a file at a previous state as done above, this is how the general
structure looks like:

$ git cat-file --textconv SHASUM:<path/to/file>

Undoing latest modifications of files

Previously, we saw how to remove files from a datasets history that were accidentally saved and
thus tracked for the first time. How does one undo a modification to a tracked file?

Let’s modify the saved Gitjoke1.txt:

$ echo "this is by far my favorite joke!" >> Gitjoke2.txt

$ cat Gitjoke2.txt
Knock knock. Who's there? Git.
Git-who?
Sorry, 'who' is not a git command - did you mean 'show'?
this is by far my favorite joke!

$ datalad status
untracked: Gitjoke1.txt (file)
untracked: Gitjoke3.txt (file)
untracked: apdffile.pdf (file)
modified: Gitjoke2.txt (file)

$ datalad save -m "add joke evaluation to joke" Gitjoke2.txt
add(ok): Gitjoke2.txt (file)
save(ok): . (dataset)
action summary:
add (ok: 1)
save (ok: 1)

How could this modification to Gitjoke2.txt be undone? With the git reset command again.
If you want to “unsave” the modification but keep it in the file, use git reset --mixed as before.
However, if you want to get rid of the modifications entirely, use the option --hard instead of
--mixed:

$ git log -n 2 --oneline
f2e8973 add joke evaluation to joke
2996ac2 save my favorite Git joke

$ git reset --hard 2996ac291b15780dd9a255dc7f162d07e21d9294
HEAD is now at 2996ac2 save my favorite Git joke

212 https://git-scm.com/docs/git-cat-file

14.3. Back and forth in time 226

https://git-scm.com/docs/git-cat-file

The DataLad Handbook, Release 0.12.0+519.g04985082

$ cat Gitjoke2.txt
Knock knock. Who's there? Git.
Git-who?
Sorry, 'who' is not a git command - did you mean 'show'?

The change has been undone completely. This method will work with files stored in Git and
annexed files.

Note that this operation only restores this one file, because the commit that was undone only
contained modifications to this one file. This is a demonstration of one of the reasons why one
should strive for commits to represent meaningful logical units of change – if necessary, they
can be undone easily.

Undoing past modifications of files

What git reset did was to undo commits from the most recent version of your dataset. How
would one undo a change that happened a while ago, though, with important changes being
added afterwards that you want to keep?

Let’s save a bad modification to Gitjoke2.txt, but also a modification to notes.txt:

$ echo "bad modification" >> Gitjoke2.txt

$ datalad save -m "did a bad modification" Gitjoke2.txt
add(ok): Gitjoke2.txt (file)
save(ok): . (dataset)
action summary:
add (ok: 1)
save (ok: 1)

$ cat << EOT >> notes.txt

Git has many handy tools to go back in forth in
time and work with the history of datasets.
Among many other things you can rewrite commit
messages, undo changes, or look at previous versions
of datasets. A superb resource to find out more about
this and practice such Git operations is this
chapter in the Pro-git book:
https://git-scm.com/book/en/v2/Git-Tools-Rewriting-History

EOT

$ datalad save -m "add note on helpful git resource" notes.txt
add(ok): notes.txt (file)
save(ok): . (dataset)
action summary:
add (ok: 1)
save (ok: 1)

The objective is to remove the first, “bad” modification, but keep the more recent modification
of notes.txt. A git reset command is not convenient, because resetting would need to reset
the most recent, “good” modification as well.

14.3. Back and forth in time 227

The DataLad Handbook, Release 0.12.0+519.g04985082

One way to accomplish it is with an interactive rebase, using the git rebase -i command218.
Experienced Git-users will know under which situations and how to perform such an interactive
rebase.

However, outlining an interactive rebase here in the handbook could lead to problems for read-
ers without (much) Git experience: An interactive rebase, even if performed successfully, can
lead to many problems if it is applied with too little experience, for example in any collaborative
real-world project.

Instead, we demonstrate a different, less intrusive way to revert one or more changes at any
point in the history of a dataset: the git revert command. Instead of rewriting the history, it
will add an additional commit in which the changes of an unwanted commit are reverted.

The command looks like this:

$ git revert SHASUM

where SHASUM specifies the commit hash of the modification that should be reverted.

Find out more

Reverting more than a single commit
Alternatively, you can also specify a range of commits modify commits, for example like
this:

$ git revert OLDER_SHASUM..NEWERSHASUM

This command will revert all commits starting with the one after OLDER_SHASUM (i.e. not
including this commit) until and including the one specified with NEWERSHASUM. For each
reverted commit, one new commit will be added to the history that reverts it. Thus, if
you revert a range of three commits, there will be three reversal commits. If you however
want the reversal of a range of commits saved in a single commit, supply the --no-commit
option as in

$ git revert --no-commit OLDER_SHASUM..NEWERSHASUM

After running this command, run a single git commit to conclude the reversal and save
it in a single commit.

Let’s see how it looks like:

$ git revert da91ec2afa1f84eca68487d2e4c7e327b9383b11
[master e0453db] Revert "did a bad modification"
Date: Mon Feb 17 08:53:06 2020 +0100
1 file changed, 1 deletion(-)

This is the state of the file in which we reverted a modification:

$ cat Gitjoke2.txt
Knock knock. Who's there? Git.
Git-who?
Sorry, 'who' is not a git command - did you mean 'show'?

It does not contain the bad modification anymore. And this is what happened in the history of
the dataset:

14.3. Back and forth in time 228

The DataLad Handbook, Release 0.12.0+519.g04985082

$ git log -n 3
commit e0453dbccdc0d7f136fc3bc868972e9451fe3932
Author: Elena Piscopia <elena@example.net>
Date: Mon Feb 17 08:53:06 2020 +0100

Revert "did a bad modification"

This reverts commit da91ec2afa1f84eca68487d2e4c7e327b9383b11.

commit 1be4a73f6d14fbcaa758572563eb5563d8e69685
Author: Elena Piscopia <elena@example.net>
Date: Mon Feb 17 08:53:06 2020 +0100

add note on helpful git resource

commit da91ec2afa1f84eca68487d2e4c7e327b9383b11
Author: Elena Piscopia <elena@example.net>
Date: Mon Feb 17 08:53:05 2020 +0100

did a bad modification

The commit that introduced the bad modification is still present, but it transparently gets un-
done with the most recent commit. At the same time, the good modification of notes.txt was
not influenced in any way. The git revert command is thus a transparent and safe way of un-
doing past changes. Note though that this command can only be used efficiently if the commits
in your datasets history are meaningful, independent units – having several unrelated modifi-
cations in a single commit may make an easy solution with git revert impossible and instead
require a complex checkout, revert, or rebase operation.

Finally, let’s take a look at the state of the dataset after this operation:

$ datalad status
untracked: Gitjoke1.txt (file)
untracked: Gitjoke3.txt (file)
untracked: apdffile.pdf (file)

As you can see, unsurprisingly, the git revert command had no effects on anything else but
the specified commit, and previously untracked files are still present.

Oh no! I’m in a merge conflict!

When working with the history of a dataset, especially when rewriting the history with an
interactive rebase or when reverting commits, it is possible to run into so-called merge conflicts.
Merge conflicts happen when Git needs assistance in deciding which changes to keep and which
to apply. It will require you to edit the file the merge conflict is happening in with a text editor,
but such merge conflict are by far not as scary as they may seem during the first few times of
solving merge conflicts.

This section is not a guide on how to solve merge-conflicts, but a broad overview on the neces-
sary steps, and a pointer to a more comprehensive guide.

• The first thing to do if you end up in a merge conflict is to read the instructions Git is
giving you – they are a useful guide.

14.3. Back and forth in time 229

The DataLad Handbook, Release 0.12.0+519.g04985082

• Also, it is reassuring to remember that you can always get out of a merge conflict by
aborting the operation that led to it (e.g., git rebase --abort.

• To actually solve a merge conflict, you will have to edit files: In the documents the merge
conflict applies to, Git marks the sections it needs help with with markers that consists of
>, <, and = signs and commit shasums or branch names. There will be two marked parts,
and you have to delete the one you do not want to keep, as well as all markers.

• Afterwards, run git add <path/to/file and finally a git commit.

An excellent resource on how to deal with merge conflicts is this post213.

Summary

This guest lecture has given you a glimpse into how to work with the history of your DataLad
datasets. To conclude this section, let’s remove all untracked contents from the dataset. This can
be done with git clean: The command git clean -f swipes your dataset clean and removes
any untracked file. Careful! This is not revertible, and content lost with this commands
can not be recovered! If you want to be extra sure, run git clean -fn beforehand – this will
give you a list of the files that would be deleted.

$ git clean -f
Removing Gitjoke1.txt
Removing Gitjoke3.txt
Removing apdffile.pdf

Afterwards, the datalad status returns nothing, indicating a clean dataset state with no un-
tracked files or modifications.

$ datalad status
nothing to save, working tree clean

Finally, if you want, apply you’re new knowledge about reverting commits to remove the
Gitjoke2.txt file.

14.4 How to get help

All DataLad errors or problems you encounter during DataLad-101 are intentional and serve
illustrative purposes. But what if you run into any DataLad errors outside of this course? Fortu-
nately, the syllabus has a whole section on that, and on one lazy, warm summer-afternoon you
flip through it.

213 https://help.github.com/en/articles/resolving-a-merge-conflict-using-the-command-line

14.4. How to get help 230

https://help.github.com/en/articles/resolving-a-merge-conflict-using-the-command-line

The DataLad Handbook, Release 0.12.0+519.g04985082

You realize that you already know the most important things: The number one advice on how
to get help is “Read the error message.”220. The second advice it “I’m not kidding: Read the
error message221. The third advice, finally, says “Honestly, read the f***ing error message222.

Help yourself

If you run into a DataLad problem and you have followed the three steps above, but the error
message does not give you a clue on how to proceed223, the first you should do is

1. find out which version of DataLad you use

2. read the help page of the command that failed

The first step is important in order to find out whether a command failed due to using a wrong
DataLad version. In order to use this book and follow along, your DataLad version should be
datalad-0.12 or higher, for example.

To find out which version you are using, run

$ datalad --version
datalad 0.12.2.dev166

If you want a comprehensive overview of your full setup, datalad wtf232 is the command to
turn to (datalad-wtf manual). Running this command will generate a report about the DataLad
installation and configuration. The output below shows an excerpt.

$ datalad wtf
WTF
configuration <SENSITIVE, report disabled by configuration>
datalad

(continues on next page)

220 http://poster.keepcalmandposters.com/default/5986752_keep_calm_and_read_the_error_message.png
221 https://images.app.goo.gl/GWQ82AAJnx1dWtWx6
222 https://images.app.goo.gl/ddxg4aowbji6XTrw7
223 https://imgs.xkcd.com/comics/code_quality_3.png
232 wtf in datalad wtf could stand for many things. “Why the Face?” “Wow, that’s fantastic!”, “What’s this for?”,

“What to fix”, “What the FAQ”, “Where’s the fire?”, “Wipe the floor”, “Welcome to fun”, “Waste Treatment Facility”,
“What’s this foolishness”, “What the fruitcake”, . . . Pick a translation of your choice and make running this command
more joyful.

14.4. How to get help 231

http://poster.keepcalmandposters.com/default/5986752_keep_calm_and_read_the_error_message.png
https://images.app.goo.gl/GWQ82AAJnx1dWtWx6
https://images.app.goo.gl/GWQ82AAJnx1dWtWx6
https://images.app.goo.gl/ddxg4aowbji6XTrw7
https://imgs.xkcd.com/comics/code_quality_3.png

The DataLad Handbook, Release 0.12.0+519.g04985082

(continued from previous page)

- full_version: 0.12.2.dev166-g68f26
- version: 0.12.2.dev166

dataset
- id: ed80af32-5159-11ea-a727-6533dd7bb2c6
- metadata: <SENSITIVE, report disabled by configuration>
- path: /home/me/dl-101/DataLad-101
- repo: AnnexRepo

dependencies
- appdirs: 1.4.3
- boto: 2.49.0
- cmd:7z: 16.02
- cmd:annex: 7.20190819+git2-g908476a9b-1~ndall+1
- cmd:bundled-git: 2.20.1
- cmd:git: 2.20.1
- cmd:system-git: 2.25.0
- cmd:system-ssh: 8.1p1

This lengthy output will report all information that might be relevant – from DataLad to git-
annex or Python up to your operating system.

The second step, finding and reading the help page of the command in question, is important
in order to find out how the command that failed is used. Are arguments specified correctly?
Does the help list any caveats?

There are multiple ways to find help on DataLad commands. You could turn to the docu-
mentation224. Alternatively, to get help right inside the terminal, run any command with the
-h/--help option (also shown as an excerpt here):

$ datalad get --help
Usage: datalad get [-h] [-s LABEL] [-d PATH] [-r] [-R LEVELS] [-n]

[-D DESCRIPTION] [--reckless [{auto|ephemeral}]] [-J NJOBS]
[PATH [PATH ...]]

Get any dataset content (files/directories/subdatasets).

This command only operates on dataset content. To obtain a new independent
dataset from some source use the INSTALL command.

By default this command operates recursively within a dataset, but not
across potential subdatasets, i.e. if a directory is provided, all files in
the directory are obtained. Recursion into subdatasets is supported too. If
enabled, relevant subdatasets are detected and installed in order to
fulfill a request.

Known data locations for each requested file are evaluated and data are
obtained from some available location (according to git-annex configuration
and possibly assigned remote priorities), unless a specific source is
specified.

NOTE
Power-user info: This command uses git annex get to fulfill
file handles.

Examples

(continues on next page)

224 http://docs.datalad.org/

14.4. How to get help 232

http://docs.datalad.org/
http://docs.datalad.org/

The DataLad Handbook, Release 0.12.0+519.g04985082

(continued from previous page)

Get a single file::

% datalad get <path/to/file>

Get contents of a directory::

% datalad get <path/to/dir/>

Get all contents of the current dataset and its subdatasets::

% datalad get . --recursive

Get (clone) a registered subdataset, but don't retrieve data::

% datalad get -n <path/to/subds>

Arguments
PATH path/name of the requested dataset component. The

component must already be known to a dataset. To add
new components to a dataset use the ADD command.
Constraints: value must be a string

Options
-h, --help, --help-np

show this help message. --help-np forcefully disables
the use of a pager for displaying the help message

-s LABEL, --source LABEL
label of the data source to be used to fulfill
requests. This can be the name of a dataset sibling or
another known source. Constraints: value must be a
string

-d PATH, --dataset PATH
specify the dataset to perform the add operation on,

This for example is the help page on datalad get (the same you would find in the documenta-
tion, but in your terminal). It contains a command description, a list of all the available options
with a short explanation of them, and example commands. The paragraph Options shows all
optional flags, and all required parts of the command are listed in the paragraph Arguments.
One first thing to check for example is whether your command call specified all of the required
arguments.

Asking questions (right)

If nothing you do on your own helps to solve the problem, consider asking others. Check out
neurostars225 and search for your problem – likely, somebody already encountered the same
error before226 and fixed it, but if not, just ask a new question with a datalad tag.

Make sure your question is as informative as it can be for others. Include

• context – what did you want to do and why?
225 https://neurostars.org/
226 http://imgs.xkcd.com/comics/wisdom_of_the_ancients.png

14.4. How to get help 233

docs.datalad.org
docs.datalad.org
https://neurostars.org/
http://imgs.xkcd.com/comics/wisdom_of_the_ancients.png
http://imgs.xkcd.com/comics/wisdom_of_the_ancients.png

The DataLad Handbook, Release 0.12.0+519.g04985082

• the problem – paste the error message (all of it), and provide the steps necessary to repro-
duce it.

• technical details – what version of DataLad are you using, what version of git-annex,
and which git-annex repository type, what is your operating system and – if applicable
– Python version? datalad wtf is your friend to find all of this information.

The “submit a question link” on DataLad’s GitHub page227 page prefills a neurostars form with a
template for a question for a good starting point if you want to have more guidance or encounter
writer’s block.

Common warnings and errors

A lot of output you will see while working with DataLad originates from warnings or errors by
DataLad, git-annex, or Git. Some of these outputs can be wordy and not trivial to comprehend -
and even if everything works, some warnings can be hard to understand. This following section
will list some common git-annex warnings and errors and attempts to explain them. If you
encounter warnings or errors that you would like to see explained in this book, please let us
know by filing an issue228.

Output produced by Git

Unset Git identity

If you have not configured your Git identity, you will see warnings like this when running any
DataLad command:

[WARNING] It is highly recommended to configure git first (set both user.name and user.
→˓email) before using DataLad.

To set your Git identity, go back to section Initial configuration (page 13).

Rejected pushes

One error you can run into when publishing dataset contents is that your datalad push to a
sibling is rejected. One example is this:

$ datalad push --to public
[ERROR] refs/heads/master->public:refs/heads/master [rejected] (non-fast-forward)␣
→˓[publish(/home/me/dl-101/DataLad-101)]

This example is an attempt to push a local dataset to its sibling on GitHub. The push is rejected
because it is a non-fast-forward merge situation. Usually, this means that the sibling contains
changes that your local dataset does not yet know about. It can be fixed by updating from the
sibling first with a datalad update --merge.

Here is a different push rejection:

$ datalad push --to roommate
publish(ok): . (dataset) [refs/heads/git-annex->roommate:refs/heads/git-annex 023a541..
→˓59a6f8d]
[ERROR] refs/heads/master->roommate:refs/heads/master [remote rejected] (branch is␣
→˓currently checked out) [publish(/home/me/dl-101/DataLad-101)] (continues on next page)

227 https://github.com/datalad/datalad#support
228 https://github.com/datalad-handbook/book/issues/new

14.4. How to get help 234

https://github.com/datalad/datalad#support
https://github.com/datalad-handbook/book/issues/new

The DataLad Handbook, Release 0.12.0+519.g04985082

(continued from previous page)

publish(error): . (dataset) [refs/heads/master->roommate:refs/heads/master [remote␣
→˓rejected] (branch is currently checked out)]
action summary:
publish (error: 1, ok: 1)

As you can see, the git-annex branch was pushed successfully, but updating the master branch
was rejected: [remote rejected] (branch is currently checked out) [publish(/home/me/
dl-101/DataLad-101)]. In this particular case, this is because it was an attempt to push from
DataLad-101 to the roommate sibling that was created in chapter Collaboration (page 83). This
is a special case of pushing, because it - in technical terms - is a push to a non-bare repository.
Unlike bare Git repositories, non-bare repositories can not be pushed to at all times. To fix this,
you either want to checkout another branch229 in the roommate sibling or push to a non-checked
out branch in the roommate sibling. Alternatively, you can configure roommate to receive the
push with Git’s receive.denyCurrentBranch configuration key. By default, this configuration
is set to refuse. Setting it to updateInstead with git config receive.denyCurrentBranch
updateInstead will allow updating the checked out branch. See git configs man page entry230

on receive.denyCurrentBranch for more.

Detached HEADs

One warning that you may encounter during an installation of a dataset is:

[INFO] Submodule HEAD got detached. Resetting branch master to point to 046713bb.␣
→˓Original location was 47e53498

Even though “detached HEAD” sounds slightly worrisome, this is merely an information and
does not require an action from your side. It is related to Git submodules231 (the underlying Git
concept for subdatasets), and informs you about the current state a subdataset is saved in the
superdataset you have just cloned.

Output produced by git-annex

Unusable annexes

Upon installation of a dataset, you may see:

[INFO] Remote origin not usable by git-annex; setting annex-ignore
[INFO] This could be a problem with the git-annex installation on the
remote. Please make sure that git-annex-shell is available in PATH when you
ssh into the remote. Once you have fixed the git-annex installation,
run: git annex enableremote origin

This warning lets you know that git-annex will not attempt to download content from the remote
“origin”. This can have many reasons, but as long as there are other remotes you can access the
data from, you are fine.

A similar warning message may appear when adding a sibling that is a pure Git remote, for
example a repository on GitHub:

229 https://git-scm.com/docs/git-checkout
230 https://git-scm.com/docs/git-config#Documentation/git-config.txt-receivedenyCurrentBranch
231 https://git-scm.com/book/en/v2/Git-Tools-Submodules

14.4. How to get help 235

https://git-scm.com/docs/git-checkout
https://git-scm.com/docs/git-config#Documentation/git-config.txt-receivedenyCurrentBranch
https://git-scm.com/book/en/v2/Git-Tools-Submodules

The DataLad Handbook, Release 0.12.0+519.g04985082

[INFO] Failed to enable annex remote github, could be a pure git or not
accessible
[WARNING] Failed to determine if github carries annex. Remote was marked by
annex as annex-ignore. Edit .git/config to reset if you think that was done
by mistake due to absent connection etc

These messages indicate that the sibling github does not carry an annex. Thus, annexed file
contents can not be pushed to this sibling. This happens if the sibling indeed does not have an
annex (which would be true, for example, for siblings on GitHub, GitLab, Bitbucket, . . . , and
would not require any further action or worry), or if the remote could not be reached, e.g.,
due to a missing internet connection (in which case you could set the key annex-ignore in
.git/config to false).

Speaking of remotes that are not available, this will probably be one of the most commonly
occurring git-annex errors to see - failing datalad get calls because remotes are not available:

Todo: paste some “please make these remotes available output”

Todo: If one does not have an SSH key configured, e.g., on a server (from remodnav paper on
brainbfast):

[INFO] Cloning https://github.com/psychoinformatics-de/paper-remodnav.git/remodnav [2␣
→˓other candidates] into '/home/homeGlobal/adina/paper-remodnav/remodnav'
Permission denied (publickey).
[WARNING] Failed to run cmd ['ssh', '-fN', '-o', 'ControlMaster=auto', '-o',
→˓'ControlPersist=15m', '-o', 'ControlPath="/home/homeGlobal/adina/.cache/datalad/sockets/
→˓6ca483de"', 'git@github.com']. Exit code=255
| stdout: None
| stderr: None
[ERROR] Failed to clone from any candidate source URL. Encountered errors per each url␣
→˓were: (OrderedDict([('https://github.com/psychoinformatics-de/paper-remodnav.git/
→˓remodnav', "Cmd('/usr/lib/git-annex.linux/git') failed due to: exit code(128)\n ␣
→˓cmdline: /usr/lib/git-annex.linux/git clone --progress -v https://github.com/
→˓psychoinformatics-de/paper-remodnav.git/remodnav /home/homeGlobal/adina/paper-remodnav/
→˓remodnav [cmd.py:wait:412]"), ('https://github.com/psychoinformatics-de/paper-remodnav.
→˓git/remodnav/.git', "Cmd('/usr/lib/git-annex.linux/git') failed due to: exit␣
→˓code(128)\n cmdline: /usr/lib/git-annex.linux/git clone --progress -v https://github.
→˓com/psychoinformatics-de/paper-remodnav.git/remodnav/.git /home/homeGlobal/adina/paper-
→˓remodnav/remodnav [cmd.py:wait:412]"), ('git@github.com:psychoinformatics-de/remodnav.
→˓git', "Cmd('/usr/lib/git-annex.linux/git') failed due to: exit code(128)\n cmdline: /
→˓usr/lib/git-annex.linux/git clone --progress -v git@github.com:psychoinformatics-de/
→˓remodnav.git /home/homeGlobal/adina/paper-remodnav/remodnav [cmd.py:wait:412]")]),)␣
→˓[install(/home/homeGlobal/adina/paper-remodnav/remodnav)]
[ERROR] Installation of subdatasets /home/homeGlobal/adina/paper-remodnav/remodnav␣
→˓failed with exception: InstallFailedError:
Failed to install dataset from any of: ['https://github.com/psychoinformatics-de/paper-
→˓remodnav.git/remodnav', 'git@github.com:psychoinformatics-de/remodnav.git'] [get.py:_
→˓install_subds_from_flexible_source:184] [install(/home/homeGlobal/adina/paper-remodnav/
→˓remodnav)]
Traceback (most recent call last):
File "code/mk_figuresnstats.py", line 811, in <module>

savefigs(args.figure, args.stats)
File "code/mk_figuresnstats.py", line 410, in savefigs

(continues on next page)

14.4. How to get help 236

The DataLad Handbook, Release 0.12.0+519.g04985082

(continued from previous page)

stat)
File "code/mk_figuresnstats.py", line 274, in confusion
load_anderson(stimtype, finame)

File "code/mk_figuresnstats.py", line 28, in load_anderson
get(fname)

File "/home/homeGlobal/adina/env/remodnav/lib/python3.5/site-packages/datalad/interface/
→˓utils.py", line 492, in eval_func

return return_func(generator_func)(*args, **kwargs)
File "/home/homeGlobal/adina/env/remodnav/lib/python3.5/site-packages/datalad/interface/

→˓utils.py", line 480, in return_func
results = list(results)

File "/home/homeGlobal/adina/env/remodnav/lib/python3.5/site-packages/datalad/interface/
→˓utils.py", line 468, in generator_func

msg="Command did not complete successfully")
datalad.support.exceptions.IncompleteResultsError: Command did not complete successfully [
→˓{'type': 'dataset', 'status': 'error', 'action': 'install', 'message': ('Installation␣
→˓of subdatasets %s failed with exception: %s', '/home/homeGlobal/adina/paper-remodnav/
→˓remodnav', "InstallFailedError: \nFailed to install dataset from any of: ['https://
→˓github.com/psychoinformatics-de/paper-remodnav.git/remodnav', 'git@github.
→˓com:psychoinformatics-de/remodnav.git'] [get.py:_install_subds_from_flexible_source:184]
→˓"), 'path': '/home/homeGlobal/adina/paper-remodnav/remodnav'}]

14.5 Gists

The more complex and larger your DataLad project, the more difficult it is to do efficient house-
keeping. This section is a selection of code snippets tuned to perform specific, non-trivial tasks
in datasets. Often, they are not limited to single commands of the version control tools you
know, but combine helpful other command line tools and general Unix command line magic.
Just like GitHub gists233, its a collection of lightweight and easily accessible tips and tricks. For
a more basic command overview, take a look at the DataLad cheat sheet (page 381). The tips
collection of git-annex234 is also a very valuable resource.

If there are tips you want to share, or if there is a question you would like to see answered here,
please get in touch235.

233 https://gist.github.com/
234 https://git-annex.branchable.com/tips/
235 https://github.com/datalad-handbook/book/issues/new

14.5. Gists 237

https://gist.github.com/
https://git-annex.branchable.com/tips/
https://git-annex.branchable.com/tips/
https://github.com/datalad-handbook/book/issues/new

The DataLad Handbook, Release 0.12.0+519.g04985082

Parallelize subdataset processing

DataLad can not yet parallelize processes that are performed independently over a large number
of subdatasets. Pushing across a dataset hierarchy or creating RIA siblings for all subdatasets
of a superdataset, for example, is performed one after the other. Unix however, has a few tools
such as xargs236 or the parallel tool of moreutils237 that can assist.

Here is an example of pushing all subdatasets (and their respective subdatasets) recursively to
their (identically named) siblings:

$ datalad -f '{path}' subdatasets | xargs -n 1 -P 10 datalad push -r --to <sibling-name> -
→˓d

datalad -f '{path}' subdatasets discovers the paths of all subdatasets, and xargs hands
them individually (-n 1) to a (recursive) datalad push, but performs 10 of these operations in
parallel (-P 10), thus achieving parallelization.

Here is an example of cross-dataset download parallelization:

$ datalad -f '{path}' subdatasets | xargs -n 1 -P 10 datalad get -d

Operations like this can safely be attempted for all commands that are independent across
subdatasets.

236 https://en.wikipedia.org/wiki/Xargs
237 https://joeyh.name/code/moreutils/

14.5. Gists 238

../usecases/datastore_for_institutions.html
https://en.wikipedia.org/wiki/Xargs
https://joeyh.name/code/moreutils/

The DataLad Handbook, Release 0.12.0+519.g04985082

Check whether all file content is present locally

In order to check if all the files in a dataset have their file contents locally available, you can ask
git-annex:

$ git annex find --not --in=here

Any file that does not have its contents locally available will be listed. If there are subdatasets
you want to recurse into, use the following command

$ git submodule foreach --quiet --recursive \
'git annex find --not --in=here --format=$displaypath/$\\{file\\}\\n'

Alternatively, to get very comprehensive output, you can use

$ datalad -f json status --recursive --annex availability

The output will be returned as json, and the key has_content indicates local content availability
(true or false). To filter through it, the command line tool jq238 works well:

$ datalad -f json status --recursive --annex all | jq '. | select(.has_content == true).
→˓path'

Drop annexed files from all past commits

If there is annexed file content that is not used anymore (i.e., data in the annex that no files in
any branch point to anymore such as corrupt files), you can find out about it and remove this
file content out of your dataset (i.e., completely and irrecoverably delete it) with git-annex’s
commands git annex unused and git annex dropunused`.

Find out which file contents are unused (not referenced by any current branch):

$ git annex unused
unused . (checking for unused data...)

Some annexed data is no longer used by any files in the repository.
NUMBER KEY
1 SHA256-s86050597--

→˓6ae2688bc533437766a48aa19f2c06be14d1bab9c70b468af445d4f07b65f41e
2 SHA1-s14--f1358ec1873d57350e3dc62054dc232bc93c2bd1

(To see where data was previously used, try: git log --stat -S'KEY')
(To remove unwanted data: git-annex dropunused NUMBER)

ok

Remove a single unused file by specifying its number in the listing above:

$ git annex dropunused 1
dropunused 1 ok

Or a range of unused data with

$ git annex dropunused 1-1000

Or all
238 https://stedolan.github.io/jq/

14.5. Gists 239

https://stedolan.github.io/jq/

The DataLad Handbook, Release 0.12.0+519.g04985082

$ git annex dropunused all

Getting single file sizes prior to downloading from the Python API and the CLI

For a single file, datalad status --annex -- myfile will report on the size of the file prior to
a datalad get.

If you want to do it in Python, try this approach:

import datalad.api as dl

ds = dl.Dataset("/path/to/some/dataset")
results = ds.status(path=<path or list of paths>, annex="basic", result_renderer=None)

Check whether a dataset contains an annex

Datasets can be either GitRepos (i.e., sole Git repositories; this happens when they are created
with the --no-annex flag, for example), or AnnexRepos (i.e., datasets that contain an annex).
Information on what kind of repository it is is stored in the dataset report of datalad wtf under
the key repo. Here is a one-liner to get this info:

$ datalad -f'{infos[dataset][repo]}' wtf

Backing-up datasets

In order to back-up datasets you can publish them to a Remote Indexed Archive (RIA) store or to
a sibling dataset. The former solution does not require Git, git-annex, or DataLad to be installed
on the machine that the back-up is pushed to, the latter does require them.

To find out more about RIA stores, checkout the section Remote Indexed Archives for dataset
storage and backup (page 257). A sketch of how to implement a sibling for backups is below:

create a back up sibling
datalad create-sibling --annex-wanted anything -r myserver:/path/to/backup
publish a full backup of the current branch
datalad publish --to=myserver -r
subsequently, publish updates to be backed up with
datalad publish --to=myserver -r --since= --missing=inherit

In order to push not only the current branch, but refs, add the option --publish-by-default
"refs/*" to the create-sibling call. Should you want to back up all annexed data, even past
versions of files, use git annex sync to push to the sibling:

$ git annex sync --all --content <sibling-name>

For an in-depth explanation and example take a look at the GitHub issue that raised this ques-
tion239.

239 https://github.com/datalad/datalad/issues/4369

14.5. Gists 240

https://github.com/datalad/datalad/issues/4369
https://github.com/datalad/datalad/issues/4369

The DataLad Handbook, Release 0.12.0+519.g04985082

Retrieve partial content from a hierarchy of (uninstalled) datasets

In order to get dataset content across a range of subdatasets, a bit of UNIX command line foo
can increase the efficiency of your command.

Example: consider retrieving all ribbon.nii.gz files for all subjects in the HCP open access
dataset240 (a dataset with about 4500 subdatasets – read on more about it in Scaling up: Man-
aging 80TB and 15 million files from the HCP release (page 339)). If all subject-subdatasets
are installed (e.g., with datalad get -n -r for a recursive installation without file retrieval),
globbing with the shell works fine:

$ datalad get HCP1200/*/T1W/ribbon.nii.gz

The Gist Parallelize subdataset processing (page 238) can show you how to parallelize this. If the
subdatasets are not yet installed, globbing will not work, because the shell can’t expand non-
existent paths. As an alternative, you can pipe the output of an (arbitrarily complex) datalad
search command into datalad get:

$ datalad -f '{path}' -c datalad.search.index-egrep-documenttype=all search 'path:.*T1w.
→˓*\.nii.gz' | xargs -n 100 datalad get

However, if you know the file locations within the dataset hierarchy and they are predictably
named and consistent, you can create a file containing all paths to be retrieved and pipe that
into get as well:

create file with all file paths
$ for sub in HCP1200/*; do echo ${sub}/T1w/ribbons.nii.gz; done > toget.txt
pipe it into datalad get
$ cat toget.txt | xargs -n 100 datalad get

Speed up status reports in large datasets

In datasets with deep dataset hierarchies or large numbers of files, datalad status calls can
be expensive. Handily, the command provides options that can boost performance by limit-
ing what is being tested and reported. In order to speed up subdataset state state evaluation,
-e/--eval-subdataset-state can be set commit or no. Instead of checking recursively for un-
committed modifications in subdatasets, this would lead status to only compare the most re-
cent commit shasum in the subdataset against the recorded subdataset state in the superdataset
(commit), or skip subdataset state evaluation completely (no). In order to speed up file type
evaluation, the option -t/--report-filetype can be set to raw. This skips an evaluation on
whether symlinks are pointers to annexed file (upon which, if true, the symlink would be re-
ported as type “file”). Instead, all symlinks will be reported as being of type “symlink”.

Squashing git-annex history

A large number of commits in the git-annex branch (think: thousands rather than hundreds)
can inflate your repository and increase the size of the .git directory, which can lead to slower
cloning operations. There are, however, ways to shrink the commit history in the annex branch.

In order to squash the entire git-annex history into a single commit, run
240 https://github.com/datalad-datasets/human-connectome-project-openaccess

14.5. Gists 241

https://github.com/datalad-datasets/human-connectome-project-openaccess
https://github.com/datalad-datasets/human-connectome-project-openaccess

The DataLad Handbook, Release 0.12.0+519.g04985082

$ git annex forget --drop-dead --force

Afterwards, if your dataset has a sibling, the branch needs to be force-pushed. If you attempt an
operation to shrink your git-annex history, also checkout this thread241 for more information on
shrinking git-annex’s history and helpful safeguards and potential caveats.

241 https://git-annex.branchable.com/forum/safely_dropping_git-annex_history/

14.5. Gists 242

https://git-annex.branchable.com/forum/safely_dropping_git-annex_history/

Part III

Advanced

243

The DataLad Handbook, Release 0.12.0+519.g04985082

There is more to DataLad than the Basics. Equipped with the fundamental building blocks
and broad DataLad expertise, you can continue to this advanced section to read more on how
DataLad can be used, from special case applications to data management at scale.

This part of the book will abandon the DataLad-101 narrative. Consider yourself graduated.
There is no need to read the chapters of this book sequentially. Rather, find chapters that match
your interest and usecase, and read its sections and associated usecases.

244

CHAPTER

FIFTEEN

ADVANCED OPTIONS

15.1 How to hide content from DataLad

You have progressed quite far in the DataLad-101 course, and by now, you have gotten a good
overview on the basics and not-so-basic-anymores of DataLad. You know how to add, modify,
and save files, even completely reproducibly, and how to share your work with others.

By now, the datalad save command is probably the most often used command in this dataset.
This means that you have seen some of its peculiarities. The most striking was that it by default
will save the complete datasets status if one does not provide a path to a file change. This would
result in all content that is either modified or untracked being saved in a single commit.

In principle, a general recommendation may be to keep your DataLad dataset clean. This assists
a structured way of working and prevents clutter, and it also nicely records provenance inside
your dataset. If you have content in your dataset that has been untracked for 9 months it will
be hard to remember where this content came from, whether it is relevant, and if it is relevant,
for what. Adding content to your dataset will thus usually not do harm – certainly not for your

245

The DataLad Handbook, Release 0.12.0+519.g04985082

dataset. However, there may be valid reasons to keep content out of DataLad’s version con-
trol and tracking. Maybe you hide your secret my-little-pony-themesongs/ collection within
Deathmetal/ and do not want a record of this in your history or the directory being shared
together with the rest of the dataset. Who knows? We would not judge in any way.

In principle, you already know a few tricks on how to be “messy” and have untracked files. For
datalad save, you know that precise file paths allow you to save only those modifications you
want to change. For datalad run you know that one can specify the --explicit option to only
save those modifications that are specified in the --output argument.

Beyond these tricks, there are two ways to leave untracked content unaffected by a datalad
save. One is the -u/--untracked option of datalad save:

$ datalad save -m "my commit message here" -u/--updated

will only save dataset modifications to previously tracked paths. If
my-little-pony-themesongs/ is not yet tracked, a datalad save -u will leave it untouched,
and its existence or content is not written to the history of your dataset.

A second way of hiding content from DataLad is a .gitignore file. As the name suggests, it is a
Git related solution, but it works just as well for DataLad.

A .gitignore file is a file that specifies which files should be ignored by the version control tool.
To use a .gitignore file, simply create a file with this name in the root of your dataset (be mind-
ful: remember the leading .!). You can use one of thousands of publicly shared examples242, or
create your own one.

To specify dataset content to be git-ignored, you can either write a full file name, e.g.
playlists/my-little-pony-themesongs/Friendship-is-magic.mp3 into this file, or paths or
patterns that make use of globbing, such as playlists/my-little-pony-themesongs/*. The
hidden section at the end of this page contains some general rules for patterns in .gitignore
files. Afterwards, you just need to save the file once to your dataset so that it is version con-
trolled. If you have new content you do not want to track, you can add new paths or patterns
to the file, and save these modifications.

Let’s try this with a very basic example: Let’s git-ignore all content in a tmp/ directory in the
DataLad-101 dataset:

$ cat << EOT > .gitignore

tmp/*
EOT

$ datalad status
untracked: .gitignore (file)

$ datalad save -m "add something to ignore" .gitignore
add(ok): .gitignore (file)
save(ok): . (dataset)
action summary:
add (ok: 1)
save (ok: 1)

242 https://github.com/github/gitignore

15.1. How to hide content from DataLad 246

https://github.com/github/gitignore

The DataLad Handbook, Release 0.12.0+519.g04985082

This .gitignore file is very minimalistic, but its sufficient to show how it works. If you now
create a tmp/ directory, all of its contents would be ignored by your datasets version control.
Let’s do so, and add a file into it that we do not (yet?) want to save to the dataset’s history.

$ mkdir tmp
$ echo "this is just noise" > tmp/a_random_ignored_file

$ datalad status
nothing to save, working tree clean

As expected, the file does not show up as untracked – it is being ignored! Therefore, a .
gitignore file can give you a space inside of your dataset to be messy, if you want to be.

Find out more

Rules for .gitignore files
Here are some general rules for the patterns you can put into a .gitignore file, taken
from the book Pro Git243 :

• Blank lines or lines starting with # are ignored
• Standard globbing patterns work. The line

*.[oa]

lets all files ending in .o or .a be ignored. Importantly, these patterns will be
applied recursively through your dataset, so that a file matching this rule will be
ignored, even if it is in a subdirectory of your dataset. If you want to ignore specific
files in the directory your .gitignore file lies in, but not any subdirectories, start
the pattern with a forward slash (/), as in /TODO.

• To specify directories, you can end patterns with a forward slash (/), for example
build/.

• You can negate a pattern by starting it with an exclamation point (!), such as !lib.
a. This would track the file lib.a, even if you would be ignoring all other files with
.a extension.

The manpage of gitignore has an extensive and well explained overview. To read it,
simply type man gitignore into your terminal.
You can have a single .gitignore file in the root of your dataset, and its rules apply
recursively to the entire hierarchy of the dataset (but not subdatasets!). Alternatively,
you can have additional .gitignore files in subdirectories of your dataset. The rules in
these nested .gitignore files only apply to the files under the directory where they are
located.

243 https://git-scm.com/book/en/v2/Git-Basics-Recording-Changes-to-the-Repository#_ignoring

Note: Note one caveat: If a command creates an output that is git-ignored, (e.g. anything
inside of tmp/ in our dataset), a subsequent command that requires it as an undisclosed input
will only succeed if both commands a ran in succession. The second command will fail if re-ran
on its own, however.

15.1. How to hide content from DataLad 247

https://git-scm.com/book/en/v2/Git-Basics-Recording-Changes-to-the-Repository#_ignoring

The DataLad Handbook, Release 0.12.0+519.g04985082

Find out more

Globally ignoring files
Its not only possible to define files or patterns for files to ignore inside of individual
datasets, but to also set global specifications to have every single dataset you own ignore
certain files or file types.
This can be useful, for example, for unwanted files that your operating system or certain
software creates, such as lock files244, .swp files245, .DS_Store files246, Thumbs.DB247, or
others.
To set rules to ignore files for all of your datasets, you need to create a global .gitignore
file. The only difference between a repository-specific and a global .gitignore file is its
location on your file system. You can put it either in its default location ~/.config/git/
ignore (you may need to create the ~/.config/git directory first), or place it into any
other location and point Git to it. If you create a file at ~/.gitignore_global and run

$ git config --global core.excludesfile ~/.gitignore_global

Git – and consequently DataLad – will not bother you about any of the files or file types
you have specified.

244 https://fileinfo.com/extension/lock
245 https://www.networkworld.com/article/2931534/what-are-unix-swap-swp-files.html
246 https://en.wikipedia.org/wiki/.DS_Store
247 https://en.wikipedia.org/wiki/Windows_thumbnail_cache#Thumbs.db

15.2 DataLad’s extensions

The commands DataLad provides cover a broad range of domain-agnostic use cases. However,
there are extension packages that can add (domain-specific) functionality and new commands.

Such extensions are shipped as separate Python packages, and are not included in DataLad
itself. Instead, users with the need for a particular extension can install the extension package
– either on top of DataLad if DataLad is already installed, or on its own (the extension will then
pull in DataLad core automatically, with no need to first or simultaneously install DataLad itself
explicitly). The installation is done with standard Python package managers, such as pip, and
beyond installation of the package, no additional setup is required.

Note: DataLad extensions listed here are of various maturity levels. Check out their documen-
tation and the sections or chapters associated with an extension to find out more about them.
We are working on content to describe each of the extensions, but this is not a high priority at
the given time. Contributions of sections, chapters, or demonstrations for extensions that do
not yet have one in the handbook are highly welcomed.

Among others (a full list can be found on PyPi248), the following DataLad extensions are avail-
able:

248 https://pypi.org/search/?q=datalad

15.2. DataLad’s extensions 248

https://fileinfo.com/extension/lock
https://www.networkworld.com/article/2931534/what-are-unix-swap-swp-files.html
https://en.wikipedia.org/wiki/.DS_Store
https://en.wikipedia.org/wiki/Windows_thumbnail_cache#Thumbs.db
https://pypi.org/search/?q=datalad

The DataLad Handbook, Release 0.12.0+519.g04985082

Extension name Description
DataLad Container249 Equips DataLad’s run/rerun functionality with the ability to

transparently execute commands in containerized computa-
tional environments. The section Computational reproducibil-
ity with software containers (page 161) demonstrates how
this extension can be used, as well as the usecase An automat-
ically and computationally reproducible neuroimaging analysis
from scratch (page 307).

DataLad Crawler250 One of the initial goals behind DataLad was to provide access
to already existing data resources. With crawl-init/crawl
commands, this extension allows to automate creation of
DataLad datasets from resources available online, and effi-
ciently keep them up-to-date. The majority of datasets in the
DataLad superdataset /// on datasets.datalad.org251 are cre-
ated and updated using this extension functionality.

Todo: contribute a section or a demo, e.g. based on existing
one252

DataLad Neuroimaging253 Metadata extraction support for a range of standards com-
mon to neuroimaging data. The usecase An automatically
and computationally reproducible neuroimaging analysis from
scratch (page 307) demonstrates how this extension can be
used.

DataLad Hirni254 A neuroimaging specific extension to allow reproducible DI-
COM to BIDS conversion of (f)MRI data. The chapter . . .
introduces this extension.

Todo: link hirni chapter once done

DataLad Metalad255 Equips DataLad with an alternative command suite and ad-
vanced tooling for metadata handling (extraction, aggrega-
tion, reporting).

Todo: once section on metadata is done, link it here

DataLad XNAT256 Equips DataLad with a set of commands to track XNAT257

projects. An alternative, more basic method to retrieve data
from an XNAT server is outlined in section Configure custom
data access (page 253).

DataLad UKBiobank258 Equips DataLad with a set of commands to obtain and moni-
tor imaging data releases of the UKBiobank259. An introduc-
tion can be found in chapter

Todo: link UKB chapter once done

DataLad htcondor260 Enhances DataLad with the ability for remote execution via
the job scheduler HTCondor261.

DataLad’s Git-remote-
clone262 helper

Enables DataLad to push and pull to all third party providers
with no native Git support that are supported by rclone263.

Todo: Rewrite Third Party chapter to use this helper

15.2. DataLad’s extensions 249

http://docs.datalad.org/projects/container/en/latest/
http://docs.datalad.org/projects/crawler/en/latest/
http://datasets.datalad.org/
http://docs.datalad.org/projects/crawler/en/latest/demos/track_data_from_webpage.html
http://docs.datalad.org/projects/crawler/en/latest/demos/track_data_from_webpage.html
https://datalad-neuroimaging.readthedocs.io/en/latest/
http://docs.datalad.org/projects/hirni/en/latest/
http://docs.datalad.org/projects/metalad/en/latest/
https://github.com/datalad/datalad-xnat
https://www.xnat.org/
https://github.com/datalad/datalad-ukbiobank
https://www.ukbiobank.ac.uk//
https://github.com/datalad/datalad-htcondor
https://research.cs.wisc.edu/htcondor/
https://github.com/datalad/git-remote-rclone
https://github.com/datalad/git-remote-rclone
https://rclone.org/

The DataLad Handbook, Release 0.12.0+519.g04985082

To install a DataLad extension, use

$ pip install <extension-name>

such as in

$ pip install datalad-container

Afterwards, the new DataLad functionality the extension provides is readily available.

Some extensions could also be available from the software distribution (e.g., NeuroDebian or
conda) you used to install DataLad itself. Visit github.com/datalad/datalad-extensions/264 to
review available versions and their status.

15.3 DataLad’s result hooks

If you are particularly keen on automating tasks in your datasets, you may be interested in
running DataLad commands automatically as soon as previous commands are executed and
resulted in particular outcomes or states. For example, you may want to automatically unlock
all dataset contents right after an installation in one go. However, you’d also want to make sure
that the install command was successful before attempting an unlock. Therefore, you would
like to automatically run the datalad unlock . command right after the datalad install
command, but only if the previous install command was successful.

Such automation allows for flexible and yet automatic responses to the results of DataLad com-
mands, and can be done with DataLad’s result hooks. Generally speaking, hooks265 intercept
function calls or events and allow to extend the functionality of a program. DataLad’s result
hooks are calls to other DataLad commands after the command resulted in a specified result –
such as a successful install.

To understand how hooks can be used and defined, we have to briefly mention DataLad’s com-
mand result evaluations. Whenever a DataLad command is executed, an internal evaluation
generates a report on the status and result of the command. To get a glimpse into such an
evaluation, you can call any DataLad command with the datalad option -f/--output-format
<default, json, json_pp, tailored, '<template>'> to return the command result evalua-
tions with a specific formatting. Here is how this can look like for a datalad create:

249 http://docs.datalad.org/projects/container/en/latest/
250 http://docs.datalad.org/projects/crawler/en/latest/
251 http://datasets.datalad.org/
252 http://docs.datalad.org/projects/crawler/en/latest/demos/track_data_from_webpage.html
253 https://datalad-neuroimaging.readthedocs.io/en/latest/
254 http://docs.datalad.org/projects/hirni/en/latest/
255 http://docs.datalad.org/projects/metalad/en/latest/
256 https://github.com/datalad/datalad-xnat
257 https://www.xnat.org/
258 https://github.com/datalad/datalad-ukbiobank
259 https://www.ukbiobank.ac.uk//
260 https://github.com/datalad/datalad-htcondor
261 https://research.cs.wisc.edu/htcondor/
262 https://github.com/datalad/git-remote-rclone
263 https://rclone.org/
264 https://github.com/datalad/datalad-extensions/
265 https://en.wikipedia.org/wiki/Hooking

15.3. DataLad’s result hooks 250

https://github.com/datalad/datalad-extensions/
https://en.wikipedia.org/wiki/Hooking

The DataLad Handbook, Release 0.12.0+519.g04985082

$ datalad -f json_pp create somedataset
[INFO] Creating a new annex repo at /tmp/somedataset
{
"action": "create",
"path": "/tmp/somedataset",
"refds": null,
"status": "ok",
"type": "dataset"

}

Internally, this is useful for final result rendering, error detection, and logging. However, by
using hooks, you can utilize these evaluations for your own purposes and “hook” in more com-
mands whenever an evaluation fulfills your criteria.

To be able to specify matching criteria, you need to be aware of the potential criteria you can
match against. The evaluation report is a dictionary with key:value pairs. The following table
provides an overview on some of the available keys and their possible values266:

Key name Values
action get, install, drop, status, . . . (any command’s name)
type file, dataset, symlink, directory
status ok, notneeded, impossible, error
path The path the previous command operated on

These key-value pairs provide the basis to define matching rules that – once met – can trig-
ger the execution of custom hooks. To define a hook based on certain command results, two
configuration variables need to be set:

datalad.result-hook.<name>.match-json

and

datalad.result-hook.<name>.call-json

Here is what you need to know about these variables:

• The <name> part of the configurations is the same for both variables, and can be an arbi-
trarily267 chosen name that serves as an identifier for the hook you are defining.

• The first configuration variable, datalad.result-hook.<name>.match-json, defines the
requirements that a result evaluation needs to match in order to trigger the hook.

• The second configuration variable, datalad.result-hook.<name>.call-json, defines
what the hook execution comprises. It can be any DataLad command of your choice.

And here is how to set the values for these variables:

• When set via the git config command, the value for datalad.result-hook.<name>.
match-json needs to be specified as a JSON-encoded dictionary with any number of keys,
such as

266 The key-value table provides a selection of available key-value pairs, but the set of possible key-value pairs
is potentially unlimited, as any third-party extension could introduce new keys, for example. If in doubt, use the
-f/--output-format option with the command of your choice to explore how your matching criteria may look like.

267 It only needs to be compatible with git config. This means that it for example should not contain any dots
(.).

15.3. DataLad’s result hooks 251

The DataLad Handbook, Release 0.12.0+519.g04985082

{"type": "file", "action": "get", "status": "notneeded"}

This translates to: “Match a “not-needed” after datalad get of a file.” If all specified values
in the keys in this dictionary match the values of the same keys in the result evaluation,
the hook is executed. Apart from == evaluations, in, not in, and != are supported. To
make use of such operations, the test value needs to be wrapped into a list, with the first
item being the operation, and the second value the test value, such as

{"type": ["in", ["file", "directory"]], "action": "get", "status": "notneeded"}

This translates to: “Match a “not-needed” after datalad get of a file or directory.” Another
example is

{"type":"dataset","action":"install","status":["eq", "ok"]}

which translates to: “Match a successful installation of a dataset”.

• The value for datalad.result-hook.<name>.call-json is specified in its Python notation,
and its options – when set via the git config command – are specified as a JSON-encoded
dictionary with keyword arguments. Conveniently, a number of string substitutions are
supported: a dsarg argument expands to the dataset given to the initial command the
hook operates on, and any key from the result evaluation can be expanded to the respec-
tive value in the result dictionary. Curly braces need to be escaped by doubling them. This
is not the easiest specification there is, but its also not as hard as it may sound. Here is
how this could look like for a datalad unlock:

$ unlock {{"dataset": "{dsarg}", "path": "{path}"}}

This translates to “unlock the path the previous command operated on, in the dataset the
previous command operated on”. Another example is this run command:

$ FIXME run {{"cmd": "cp ~/templates/standard-readme.txt {path}/README", "dataset":
→˓"{dsarg}", "explicit": true}}

This translate to “execute a run command in the dataset the previous command op-
erated on. In this run command, copy a README template file from ~/Templates/
standard-readme.txt and place it into the newly created dataset.” A final example is
this:

$ run_procedure {{"dataset":"{path}","spec":"cfg_metadatatypes bids"}}

This hook will run the procedure cfg_metadatatypes with the argument bids and thus
set the standard metadata extractor to be bids.

As these variables are configuration variables, they can be set via git config – either for the
dataset (--local), or the user (--global)268:

268 To re-read about the git config command and other configurations of DataLad and its underlying tools, go
back to the chapter on Configurations, starting with DIY configurations (page 108). Note that hooks are only read
from Git’s config files, not .datalad/config! Else, this would pose a severe security risk, as it would allow installed
datasets to alter DataLad commands to perform arbitrary executions on a system.

15.3. DataLad’s result hooks 252

The DataLad Handbook, Release 0.12.0+519.g04985082

$ git config --global --add datalad.result-hook.readme.call-json 'run {{"cmd":"cp ~/
→˓Templates/standard-readme.txt {path}/README", "outputs":["{path}/README"], "dataset":"
→˓{path}","explicit":true}}'
$ git config --global --add datalad.result-hook.readme.match-json '{"type": "dataset",
→˓"action":"create","status":"ok"}'

Here is what this writes to the ~/.gitconfig file:

[datalad "result-hook.readme"]
call-json = run {{\"cmd\":\"cp ~/Templates/standard-readme.txt {path}/README\", \

→˓"outputs\":[\"{path}/READ>
match-json = {\"type\": \"dataset\",\"action\":\"create\",\"status\":\"ok\"}

Note how characters such as quotation marks are automatically escaped via backslashes. If
you want to set the variables “by hand” with an editor instead of using git config, pay close
attention to escape them as well.

Given this configuration in the global ~/.gitconfig file, the “readme” hook would be executed
whenever you successfully create a new dataset with datalad create. The “readme” hook would
then automatically copy a file, ~/Templates/standard-readme.txt (this could be a standard
README template you defined), into the new dataset.

15.4 Configure custom data access

DataLad can download files via the http, https, ftp, and s3 protocol from various data storage
solutions via its downloading commands (datalad download-url, datalad addurls, datalad
get). If data retrieval from a storage solution requires authentication, for example via a user-
name and password combination, DataLad provides an interface to query, request, and store
the most common type of credentials that are necessary to authenticate, for a range of authen-
tication types. There are a number of natively supported types of authentication and out-of-the
box access to a broad range of access providers, from common solutions such as S3269 to spe-
cial purpose solutions, such as LORIS270. However, beyond natively supported services, custom
data access can be configured as long as the required authentication and credential type are
supported. This makes DataLad even more flexible for retrieving data.

Basic process

For any supported access type that requires authentication, the procedure is always the same:
Upon first access via any downloading command, users will be prompted for their credentials
from the command line. Subsequent downloads handle authentication in the background as
long as the credentials stay valid. An example of this credential management is shown in the
usecase Scaling up: Managing 80TB and 15 million files from the HCP release (page 339): Data
is stored in S3 buckets that require authentication with AWS credentials. The first datalad
get to retrieve any of the data will prompt for the credentials from the terminal. If the given
credentials are valid, the requested data will be downloaded, and all subsequent retrievals via
get will authenticate automatically, without user input, as long as the entered credentials stay
valid.

269 https://aws.amazon.com/s3/?nc1=h_ls
270 https://loris.ca/

15.4. Configure custom data access 253

https://aws.amazon.com/s3/?nc1=h_ls
https://loris.ca/

The DataLad Handbook, Release 0.12.0+519.g04985082

Find out more

How does the authentication work?
Passwords, user names, tokens, or any other login information is stored in your system’s
(encrypted) keyring271. It is a built-in credential store, used in all major operating sys-
tems, and can store credentials securely. DataLad uses the Python keyring272 package to
access the keyring. In addition to a standard interface to the keyring, this library also has
useful special purpose backends that come in handy in corner cases such as HPC/cluster
computing, where no interactive sessions are available.

271 https://en.wikipedia.org/wiki/GNOME_Keyring
272 https://keyring.readthedocs.io/en/latest/

If a particular storage solution requires authentication but it is not known to DataLad yet, the
download will fail. Here is how this looks like if data is retrieved from a server that requires
HTTP authentication, but DataLad – or the dataset – lacks a configuration for data access about
this server:

$ datalad download-url https://example.com/myuser/protected/path/to/file
[INFO] Downloading 'https://example.com/myuser/protected/path/to/file' into 'local/

→˓path/'
Authenticated access to https://example.com/myuser/protected/path/to/file has failed.
Would you like to setup a new provider configuration to access url? (choices: [yes],␣

→˓no): yes

However, data access can be configured by the user if the required authentication and credential
type are supported by DataLad (a list is given in the hidden section below). With a data access
configuration in place, commands such as datalad download-url or datalad addurls can work
with urls the point to the location of the data to be retrieved, and datalad get is enabled to
retrieve file contents from these sources.

The configuration can either be done in the terminal upon a prompt from the command line
when a download fails due to a missing provider configuration as shown above, or by placing a
configuration file for the required data access into .datalad/providers/<provider-name>.cfg.
The following information is needed:

• An arbitrary name that the data access is identified with,

• a regular expression that can match a url one would want to download from,

• an authentication type, and

• a credential type.

The example below sheds some light one this.

Find out more

Which authentication and credential types are possible?
When configuring custom data access, credential and authentication type are required
information. Below, we list the most common choices for these fields.
Among the most common credential types, 'user_password', 'aws-s3', and 'token'
authentication is supported. For a full list, including some less common authentication
types, please see the technical documentation of DataLad.
For authentication, the most common supported solutions are 'html_form', 'http_auth'
(http and html form-based authentication273), 'http_basic_auth' (http basic access274),

15.4. Configure custom data access 254

https://en.wikipedia.org/wiki/GNOME_Keyring
https://keyring.readthedocs.io/en/latest/
https://en.wikipedia.org/wiki/HTTP%2BHTML_form-based_authentication
https://en.wikipedia.org/wiki/Basic_access_authentication

The DataLad Handbook, Release 0.12.0+519.g04985082

'http_digest_auth' (digest access authentication275), 'bearer_token' (http bearer to-
ken authentication276) and 'aws-s3'. A full list can be found in the technical docs.

273 https://en.wikipedia.org/wiki/HTTP%2BHTML_form-based_authentication
274 https://en.wikipedia.org/wiki/Basic_access_authentication
275 https://en.wikipedia.org/wiki/Digest_access_authentication
276 https://tools.ietf.org/html/rfc6750

Example: Data access to a server that requires basic HTTP authentication

Consider a private Apache webserver277 with an .htaccess file that configures a range of al-
lowed users to access a certain protected directory on this server via basic HTTP authentica-
tion278. If opened in a browser, such a setup would prompt visitors of this directory on the
webserver for their username and password, and only grant access if valid credentials are en-
tered. Unauthenticated requests cause 401 Unauthorized Status responses.

By default, when DataLad attempts to retrieve files from this protected directory, the authenti-
cation and credential type that are required are unknown to DataLad and authentication fails.
An attempt to download or get a file from this directory with DataLad can only succeed if a
“provider configuration”, i.e., a configuration how to access the data, for this specific webserver
with information on how to authenticate exists.

“Provider configurations” are small text files that either exist on a per-dataset level in .datalad/
providers/<name>.cfg, or on a user-level in ~/.config/datalad/providers/<name>.cfg. They
can be created and saved by hand, or configured “on the fly” from the command line upon
unsuccessful download attempts. A configuration file follows a similar structure as the example
below:

[provider:my-webserver]
url_re = https://example.com/~myuser/protected/.*
credential = my-webserver
authentication_type = http_basic_auth

[credential:my-webserver]
type = user_password

For a local279, i.e., dataset-specific, configuration, place the file into .datalad/providers/
my-webserver.cfg. Subsequently, in the dataset that this file was placed into, downloading
commands that point to https://example.com/~myuser/protected/<path> will ask (once) for
the user’s user name and password, and subsequently store these credentials. In order to make
it a global configuration, i.e., enable downloads from the webserver from within all datasets
of the user, place the file into the users home directory under ~/.config/datalad/providers/
my-webserver.cfg.

If the file is generated “on the fly” from the terminal, it will prompt for exactly the same in-
formation as specified in the example above and write the required .cfg based on the given
information. Note that this will configure data access globally, i.e., it will place the file under
~/.config/datalad/providers/<name>.cfg. Here is how that would look like:

277 https://httpd.apache.org/
278 https://en.wikipedia.org/wiki/Basic_access_authentication
279 To re-read on configurations and their scope, check out chapter Tuning datasets to your needs (page 108) again.

15.4. Configure custom data access 255

https://en.wikipedia.org/wiki/Digest_access_authentication
https://tools.ietf.org/html/rfc6750
https://tools.ietf.org/html/rfc6750
https://httpd.apache.org/
https://en.wikipedia.org/wiki/Basic_access_authentication
https://en.wikipedia.org/wiki/Basic_access_authentication

The DataLad Handbook, Release 0.12.0+519.g04985082

$ datalad download-url https://example.com/~myuser/protected/my_protected_file
[INFO] Downloading 'https://example.com/~myuser/protected/my_protected_file' into '/
→˓tmp/ds/'
Authenticated access to https://example.com/~myuser/protected/my_protected_file has␣
→˓failed.
Would you like to setup a new provider configuration to access url? (choices: [yes],␣
→˓no): yes

New provider name
Unique name to identify 'provider' for https://example.com/~myuser/protected/my_
→˓protected_file [https://example.com]:
my-webserver

New provider regular expression
A (Python) regular expression to specify for which URLs this provider
should be used [https://example\.com/\~myuser/protected/my_protected_file]:
https://example.com/~myuser/protected/.*

Authentication type
What authentication type to use (choices: aws-s3, bearer_token, html_form,
http_auth, http_basic_auth, http_digest_auth, loris-token, nda-s3, none, xnat):
http_basic_auth

Credential
What type of credential should be used? (choices: aws-s3, loris-token, nda-s3,
token, [user_password]):
user_password

Save provider configuration file
Following configuration will be written to /home/me/.config/datalad/providers/my-
→˓webserver.cfg:
Provider configuration file created to initially access
https://example.com/~myuser/protected/my_protected_file

[provider:my-webserver]
url_re = https://example.com/~myuser/protected/.*
authentication_type = http_basic_auth
Note that you might need to specify additional fields specific to the
authenticator. Fow now "look into the docs/source" of <class 'datalad.downloaders.
→˓http.HTTPBasicAuthAuthenticator'>
http_basic_auth_
credential = my-webserver

[credential:my-webserver]
If known, specify URL or email to how/where to request credentials
url = ???
type = user_password
(choices: [yes], no):

yes

You need to authenticate with 'my-webserver' credentials.
user: <user name>

password: <password>
password (repeat): <password>
[INFO] http session: Authenticating into session for https://example.com/~myuser/
→˓protected/my_protected_file

(continues on next page)

15.4. Configure custom data access 256

The DataLad Handbook, Release 0.12.0+519.g04985082

(continued from previous page)

https://example.com/~myuser/protected/my_protected_file: 0%| | 0.00/611k ␣
→˓ ␣
→˓ ␣
→˓ download_url(ok): /tmp/xnat2/
→˓0015911870_1.3.12.2.1107.5.2.32.35135.2011102112040130362336780.dcm (file)
add(ok): my_protected_file (file)
save(ok): . (dataset)
action summary:
add (ok: 1)
download_url (ok: 1)
save (ok: 1)

Subsequently, all downloads from https://example.com/~myuser/protected/* by the user will
succeed. If something went wrong during this interactive configuration, delete or edit the file
at ~/.config/datalad/providers/<name>.cfg.

15.5 Remote Indexed Archives for dataset storage and backup

If DataLad datasets should be backed-up, made available for collaborations with others, or
stored or managed in a central location, remote indexed archive (RIA) stores, dataset storage
locations that allow for access to and collaboration on DataLad datasets, may be a suitable
solution. They are flat, flexible, file-system based repository representations of any number of
datasets, and they can exist on all standard computing infrastructure, be it personal computers,
servers or compute clusters, or even super computing infrastructure – even on machines that
do not have DataLad installed.

Note: Setting up and interacting with RIA stores requires DataLad version 0.13.0 or higher. In
order to understand this section, some knowledge on Git-internals and overcoming any fear of
how checksums and UUIDs look can be helpful.

Technical details

RIA stores can be created or extended with a single command from within any dataset. DataLad
datasets can subsequently be published into the datastore as a means of backing up a dataset
or creating a dataset sibling to collaborate on with others. Alternatively, datasets can be cloned
and updated from a RIA store just as from any other dataset location. The subsection RIA store
workflows (page 262) a few paragraphs down will demonstrate RIA-store related functionality.
But prior to introducing the user-facing commands, this section starts by explaining the layout
and general concept of a RIA store.

Layout

RIA stores store DataLad datasets. Both the layout of the RIA store and the layout of the
datasets in the RIA store are different from typical dataset layouts, though. If one were to take
a look inside of a RIA store as it is set up by default, one would see a directory that contains a
flat subdirectory tree with datasets represented as bare Git repositories and an annex. Usually,

15.5. Remote Indexed Archives for dataset storage and backup 257

The DataLad Handbook, Release 0.12.0+519.g04985082

looking inside of RIA stores is not necessary for RIA-related workflows, but it can help to grasp
the concept of these stores.

The first level of subdirectories in this RIA store tree consists of the first three characters of the
dataset IDs of the datasets that lie in the store, and the second level of subdatasets contains
the remaining characters of the dataset IDs. Thus, the first two levels of subdirectories in the
tree are split dataset IDs of the datasets that are stored in them292. The code block below
illustrates how a single DataLad dataset looks like in a RIA store, and the dataset ID of the
dataset (946e8cac-432b-11ea-aac8-f0d5bf7b5561) is highlighted:

/path/to/my_riastore
946

e8cac-432b-11ea-aac8-f0d5bf7b5561
annex

objects
6q

mZ
MD5E-s93567133--7c93fc5d0b5f197ae8a02e5a89954bc8.nii.gz

MD5E-s93567133--7c93fc5d0b5f197ae8a02e5a89954bc8.nii.gz
6v

zK
MD5E-s2043924480--47718be3b53037499a325cf1d402b2be.nii.gz

MD5E-s2043924480--47718be3b53037499a325cf1d402b2be.nii.gz
[...]
[...]

archives
archive.7z

branches
config
description
HEAD
hooks

applypatch-msg.sample
[...]
update.sample

info
exclude

objects
05

3d25959223e8173497fa7f747442b72c31671c
0b

8d0edbf8b042998dfeb185fa2236d25dd80cf9
[...]

[...]
info
pack

refs
heads

git-annex
master

tags
ria-layout-version
ria-remote-ebce196a-b057-4c96-81dc-7656ea876234

transfer

(continues on next page)

292 The two-level structure (3 ID characters as one subdirectory, the remaining ID characters as the next subdirec-
tory) exists to avoid exhausting file system limits on the number of files/folders within a directory.

15.5. Remote Indexed Archives for dataset storage and backup 258

The DataLad Handbook, Release 0.12.0+519.g04985082

(continued from previous page)

error_logs
ria-layout-version

If a second dataset gets published to the RIA store, it will be represented in a similar tree
structure underneath its individual dataset ID. If subdatasets of a dataset are published into
a RIA store, they are not represented underneath their superdataset, but are stored on the
same hierarchy level as any other dataset. Thus, the dataset representation in a RIA store is
completely flat293. With this hierarchy-free setup, the location of a particular dataset in the RIA
store is only dependent on its dataset ID. As the dataset ID is universally unique, gets assigned
to a dataset at the time of creation, and does not change across the life time of a dataset, no
two different datasets could have the same location in a RIA store.

The directory underneath the two dataset-ID-based subdirectories contains a bare git repository
(highlighted above as well) that is a clone of the dataset.

Find out more

What is a bare Git repository?
A bare Git repository is a repository that contains the contents of the .git directory
of regular DataLad datasets or Git repositories, but no worktree or checkout. This has
advantages: The repository is leaner, it is easier for administrators to perform garbage
collections, and it is required if you want to push to it at all times. You can find out more
on what bare repositories are and how to use them here280.
Note that bare Git repositories can be cloned, and the clone of a bare Git repository will
have a checkout and a worktree, thus resuming the shape that you are familiar with.

280 https://git-scm.com/book/en/v2/Git-on-the-Server-Getting-Git-on-a-Server

Inside of the bare Git repository, the annex directory – just as in any standard dataset or repos-
itory – contains the dataset’s keystore (object tree) under annex/objects295. In conjunction,
keystore and bare Git repository are the original dataset – just differently represented, with no
working tree, i.e., directory hierarchy that exists in the original dataset, and without the name
it was created under, but stored under its dataset ID instead.

If necessary, the keystores (annex) can be (compressed) 7zipped281 archives (archives/), either
for compression gains, or for use on HPC-systems with inode282 limitations297. Despite being
7zipped, those archives can be indexed and support relatively fast random read access. Thus,
the entire key store can be put into an archive, re-using the exact same directory structure, and

293 Beyond datasets, the RIA store only contains the directory error_logs for error logging and the file
ria-layout-version for a specification of the dataset tree layout in the store (last two lines in the code block above).
The ria-layout-version is important because it identifies whether the keystore uses git-annex’s hashdirlower (git-
annex’s default for bare repositories) or hashdirmixed layout (which is necessary to allow symlinked annexes, rele-
vant for ephemeral clones). To read more about hashing in the key store, take a look at the docs294.

294 https://git-annex.branchable.com/internals/hashing/
295 To re-read about how git-annex’s object tree works, check out section Data integrity (page 77), and pay close

attention to the hidden section. Additionally, you can find a lot of background information in git-annex’s documen-
tation296.

296 https://git-annex.branchable.com/internals/
281 https://www.7-zip.org/
282 https://en.wikipedia.org/wiki/Inode
297 The usecase

Todo: Link UKBiobank on supercomputer usecase once ready

shows how this feature can come in handy.

15.5. Remote Indexed Archives for dataset storage and backup 259

https://git-scm.com/book/en/v2/Git-on-the-Server-Getting-Git-on-a-Server
https://www.7-zip.org/
https://en.wikipedia.org/wiki/Inode
https://git-annex.branchable.com/internals/hashing/
https://git-annex.branchable.com/internals/
https://git-annex.branchable.com/internals/

The DataLad Handbook, Release 0.12.0+519.g04985082

remains fully accessible while only using a handful of inodes, regardless of file number and size.
If the dataset contains only annexed files, a complete dataset can be represented in about 25
inodes.

Taking all of the above information together, on an infrastructural level, a RIA store is fully self-
contained, and is a plain file system storage, not a database. Everything inside of a RIA store
is either a file, a directory, or a zipped archive. It can thus be set up on any infrastructure that
has a file system with directory and file representation, and has barely any additional software
requirements (see below). Access to datasets in the store can be managed by using file system
permissions. With these attributes, a RIA store is a suitable solution for a number of usecases
(back-up, single or multi-user dataset storage, central point for collaborative workflows, . . .),
be that on private workstations, webservers, compute clusters, or other IT infrastructure.

Find out more

Software Requirements
On the RIA store hosting infrastructure, only 7z is to be installed, if the archive feature
is desired. Specifically, no Git, no git-annex, and no otherwise running daemons are
necessary. If the RIA store is set up remotely, the server needs to be SSH-accessible.
On the client side, you need DataLad version 0.13.0 or later. Starting with this version,
DataLad has the create-sibling-ria command and the git-annex ora-remote special
remote that is required to get annexed dataset contents into a RIA store.

git-annex ORA-remote special remotes

On a technical level, beyond being a directory tree of datasets, a RIA store is by default a git-
annex ORA-remote (optional remote access) special remote of a dataset. This allows to not only
store the history of a dataset, but also all annexed contents.

Find out more

What is a special remote?
A special-remote283 is an extension to Git’s concept of remotes, and can enable git-annex
to transfer data to and from places that are not Git repositories (e.g., cloud services or
external machines such as an HPC system). Don’t envision a special-remote as a physical
place or location – a special-remote is just a protocol that defines the underlying transport
of your files to and from a specific location.

283 https://git-annex.branchable.com/special_remotes/

The git-annex ora-remote special remote is referred to as a “storage sibling” of the original
dataset. It is similar to git-annex’s built-in directory284 special remote (but works remotely and
uses the hashdir_mixed293 keystore layout). Thanks to the git-annex ora-remote, RIA stores can
have regular git-annex key storage and retrieval of keys from (compressed) 7z archives in the
RIA store works. Put simple, annexed contents of datasets can only be pushed into RIA stores if
they have a git-annex ora-remote.

Certain applications will not require special remote features. The usecase Scaling up: Managing
80TB and 15 million files from the HCP release (page 339) shows an example where git-annex
key storage is explicitly not wanted. For most storage or back-up scenarios, special remote

284 https://git-annex.branchable.com/special_remotes/directory/

15.5. Remote Indexed Archives for dataset storage and backup 260

https://git-annex.branchable.com/special_remotes/
https://git-annex.branchable.com/special_remotes/directory/

The DataLad Handbook, Release 0.12.0+519.g04985082

capabilities are useful, though, and thus the default298. The datalad create-sibling-ria
command will automatically create a dataset representation in a RIA store (and set up the RIA
store, if it does not exist), and configure a sibling to allow publishing to the RIA store and
updating from it. With special remote capabilities enabled, the command will automatically
create the special remote as a storage-sibling and link it to the RIA-sibling. With the sibling
and special remote set up, upon an invocation of datalad push --to <sibling>, the complete
dataset contents, including annexed contents, will be published to the RIA store, with no further
setup or configuration required299.

Advantages of RIA stores

Storing datasets in RIA stores has a number of advantages that align well with the demands of
central dataset management on shared compute infrastructure, but are also well suited for most
back-up and storage applications. In a RIA store layout, the first two levels of subdirectories can
host any number of keystores and bare repositories. As datasets are identified via ID and stored
next to eachother underneath the top-level RIA store directory, the store is completely flexible
and extendable, and regardless of the number or nature of datasets inside of the store, a RIA
store keeps a homogeneous directory structure. This aids the handling of large numbers of
repositories, because unique locations are derived from dataset/repository properties (their ID)
rather than a dataset name or a location in a complex dataset hierarchy. Because the dataset
representation in the RIA store is a bare repository, “house-keeping” as well as query tasks can
be automated or performed by data management personnel with no domain-specific knowledge
about dataset contents. Short maintenance scripts can be used to automate basically any task
that is of interest and possible in a dataset, but across the full RIA store. A few examples are:

• Copy or move annex objects into a 7z archive.

• Find dataset dependencies across all stored datasets by returning the dataset IDs of sub-
datasets recorded in each dataset.

• Automatically return the number of commits in each repository.

• Automatically return the author and time of the last dataset update.

• Find all datasets associated with specific authors.

• Clean up unnecessary files and minimize a (or all) repository with Gits garbage collection
(gc)285 command.

The usecase Building a scalable data storage for scientific computing (page 352) demonstrates
the advantages of this in a large scientific institute with central data management. Due to the
git-annex ora-remote special remote, datasets can be exported and stored as archives to save
disk space.

Todo: link to ukb chapter as example

298 Special remote capabilities of a RIA store can be disabled at the time of RIA store creation by passing the option
--no-storage-sibling to the datalad create-sibling-ria command.

299 To re-read about publication dependencies and why this is relevant to annexed contents in the dataset, checkout
section Beyond shared infrastructure (page 170).

285 https://git-scm.com/docs/git-gc

15.5. Remote Indexed Archives for dataset storage and backup 261

https://git-scm.com/docs/git-gc
https://git-scm.com/docs/git-gc

The DataLad Handbook, Release 0.12.0+519.g04985082

RIA store workflows

The user facing commands for interactions with a RIA store are barely different from standard
DataLad workflows. The paragraphs below detail how to create and populate a RIA store,
how to clone datasets and retrieve data from it, and also how to handle permissions or hide
technicalities.

Creating or publishing to RIA stores

A dataset can be added into an existing or not yet existing RIA store by running the datalad
create-sibling-ria command (datalad-create-sibling-ria manual), and subsequently pub-
lished into the store using datalad push. Just like the datalad siblings add command, for
datalad create-sibling-ria, an arbitrary sibling name (with the -s/--name option) and a URL
to the location of the store (as a positional argument) need to be specified. In the case of RIA
stores, the URL takes the form of a ria+ URL, and the looks of this URL are dependent on where
the RIA store (should) exists, or rather, which file transfer protocol (SSH or file) is used:

• A URL to an SSH-accessible server has a ria+ssh:// prefix, followed by user and host-
name specification and an absolute path: ria+ssh://[user@]hostname:/absolute/path/
to/ria-store

• A URL to a store on a local file system has a ria+file:// prefix, followed by an absolute
path: ria+file:///absolute/path/to/ria-store

Note that it is always required to specify an absolute path in the URL!

Note: The upcoming demonstration of RIA stores uses the DataLad-101 dataset the was cre-
ated throughout the Basics of this handbook. If you want to execute these code snippets on a
DataLad-101 dataset you created, there is one modification that needs to be done first:

Find out more

If necessary, adjust the submodule path!
Back in Subdataset publishing (page 184), in order to appropriately reference and link
subdatasets on hostings sites such as GitHub, we adjusted the submodule path of the
subdataset in .gitmodules to point to a published subdataset on GitHub:

in DataLad-101
$ cat .gitmodules
[submodule "recordings/longnow"]

path = recordings/longnow
url = https://github.com/datalad-datasets/longnow-podcasts.git
datalad-id = b3ca2718-8901-11e8-99aa-a0369f7c647e

[submodule "midterm_project"]
path = midterm_project
url = https://github.com/adswa/midtermproject
datalad-id = 229a787c-906d-11ea-96fe-833ef2c0cd3b

Later in this demonstration we would like to publish the subdataset to a RIA store and re-
trieve it automatically from this store – retrieval is only attempted from a store, however,
if no other working source is known. Therefore, we will remove the reference to the pub-
lished dataset prior to this demonstration and replace it with the path it was originally
referenced under.

15.5. Remote Indexed Archives for dataset storage and backup 262

The DataLad Handbook, Release 0.12.0+519.g04985082

in DataLad-101
$ datalad subdatasets --contains midterm_project --set-property url ./midterm_
→˓project
subdataset(ok): midterm_project (dataset)

To demonstrate the basic process, we will create a RIA store on a local file system to publish the
DataLad-101 dataset from the handbook’s “Basics” section to. In the example below, the RIA
sibling gets the name ria-backup. The URL uses the file protocol and points with an absolute
path to the not yet existing directory myriastore.

inside of the dataset DataLad-101
$ datalad create-sibling-ria -s ria-backup ria+file:///home/me/myriastore
[INFO] Start checking pre-existing sibling configuration Dataset(/home/me/dl-101/DataLad-
→˓101)
[INFO] Discovered sibling here in dataset at /home/me/dl-101/DataLad-101
[INFO] Discovered sibling gin in dataset at /home/me/dl-101/DataLad-101
[INFO] Discovered sibling roommate in dataset at /home/me/dl-101/DataLad-101
[INFO] Finished checking pre-existing sibling configuration Dataset(/home/me/dl-101/
→˓DataLad-101)
[INFO] create siblings 'ria-backup' and 'ria-backup-storage' ...
[INFO] Fetching updates for Dataset(/home/me/dl-101/DataLad-101)
[INFO] Configure additional publication dependency on "ria-backup-storage"
create-sibling-ria(ok): /home/me/dl-101/DataLad-101 (dataset)

Afterwards, the dataset has two additional siblings: ria-backup, and ria-backup-storage.

$ datalad siblings
.: here(+) [git]
.: roommate(+) [../mock_user/DataLad-101 (git)]
.: ria-backup(-) [/home/me/myriastore/07c/74330-9069-11ea-96fe-833ef2c0cd3b (git)]
.: gin(+) [/home/me/pushes/DataLad-101 (git)]
.: ria-backup-storage(+) [ora]

The storage sibling is the git-annex ora-remote and is set up automatically unless
create-sibling-ria is run with the --no-storage-sibling flag. By default, it has the name
of the RIA sibling, suffixed with -storage, but alternative names can be supplied with the
--storage-name option.

Find out more

Take a look into the store
Right after running this command, a RIA store has been created in the specified location:

15.5. Remote Indexed Archives for dataset storage and backup 263

The DataLad Handbook, Release 0.12.0+519.g04985082

$ tree /home/me/myriastore
/home/me/myriastore

07c
74330-9069-11ea-96fe-833ef2c0cd3b

annex
objects

archives
branches
config
description
HEAD
hooks

applypatch-msg.sample
commit-msg.sample
fsmonitor-watchman.sample
post-update.sample
pre-applypatch.sample
pre-commit.sample
prepare-commit-msg.sample
pre-push.sample
pre-rebase.sample
pre-receive.sample
update.sample

info
exclude

objects
info
pack

refs
heads
tags

ria-layout-version
error_logs
ria-layout-version

15 directories, 17 files

Note that there is one dataset represented in the RIA store. The two-directory structure
it is represented under corresponds to the dataset ID of DataLad-101:

The dataset ID is stored in .datalad/config
$ cat .datalad/config
[datalad "dataset"]

id = 07c74330-9069-11ea-96fe-833ef2c0cd3b

In order to publish the dataset’s history and all its contents into the RIA store, a single datalad
push to the RIA sibling suffices:

$ datalad push --to ria-backup
[INFO] Start enumerating objects
[INFO] Start counting objects
[INFO] Start compressing objects
[INFO] Start writing objects
[INFO] Start resolving deltas
[INFO] Start enumerating objects

(continues on next page)

15.5. Remote Indexed Archives for dataset storage and backup 264

The DataLad Handbook, Release 0.12.0+519.g04985082

(continued from previous page)

[INFO] Start counting objects
[INFO] Start compressing objects
[INFO] Start writing objects
[INFO] Start resolving deltas
copy(ok): books/TLCL.pdf (file) [to ria-backup-storage...]
copy(ok): books/bash_guide.pdf (file) [to ria-backup-storage...]
copy(ok): books/byte-of-python.pdf (file) [to ria-backup-storage...]
copy(ok): books/progit.pdf (file) [to ria-backup-storage...]
publish(ok): . (dataset) [refs/heads/master->ria-backup:refs/heads/master [new branch]]
publish(ok): . (dataset) [refs/heads/git-annex->ria-backup:refs/heads/git-annex [new␣
→˓branch]]

Find out more

Take another look into the store
Now that dataset contents have been pushed to the RIA store, the bare repository con-
tains them, although their representation is not human-readable. But worry not – this
representation only exists in the RIA store. When cloning this dataset from the RIA store,
the clone will be in its standard human-readable format.

15.5. Remote Indexed Archives for dataset storage and backup 265

The DataLad Handbook, Release 0.12.0+519.g04985082

$ tree /home/me/myriastore
/home/me/myriastore

07c
74330-9069-11ea-96fe-833ef2c0cd3b

annex
objects

F1
Wz

MD5E-s4242644--f4e1c8ebfb5c89a69ff6d268eb2e63e3.pdf
MD5E-s4242644--f4e1c8ebfb5c89a69ff6d268eb2e63e3.pdf

G6
Gj

MD5E-s12465653--05cd7ed561d108c9bcf96022bc78a92c.pdf
MD5E-s12465653--05cd7ed561d108c9bcf96022bc78a92c.pdf

jf
3M

MD5E-s2120211--06d1efcb05bb2c55cd039dab3fb28455.pdf
MD5E-s2120211--06d1efcb05bb2c55cd039dab3fb28455.pdf

WF
Gq

MD5E-s1198170--0ab2c121bcf68d7278af266f6a399c5f.pdf
MD5E-s1198170--0ab2c121bcf68d7278af266f6a399c5f.pdf

archives
branches
config
description
HEAD
hooks

applypatch-msg.sample
commit-msg.sample
fsmonitor-watchman.sample
post-update.sample
pre-applypatch.sample
pre-commit.sample
prepare-commit-msg.sample
pre-push.sample
pre-rebase.sample
pre-receive.sample
update.sample

info
exclude

objects
info
pack

pack-409dd939dfa96072f004f939868d0fcbc41dd767.idx
pack-409dd939dfa96072f004f939868d0fcbc41dd767.pack
pack-b0874468fd957dcd4a602a730aabaceeaef42afa.idx
pack-b0874468fd957dcd4a602a730aabaceeaef42afa.pack

ora-remote-33f4615c-dddd-4f49-9e81-2c357e427f63
transfer

refs
heads

git-annex
master

tags
ria-layout-version

error_logs
ria-layout-version

29 directories, 27 files

A second dataset can be added and published to the store in the very same way. As a demon-
stration, we’ll do it for the midterm_project subdataset:

15.5. Remote Indexed Archives for dataset storage and backup 266

The DataLad Handbook, Release 0.12.0+519.g04985082

$ cd midterm_project
$ datalad create-sibling-ria -s ria-backup ria+file:///home/me/myriastore
[INFO] Start checking pre-existing sibling configuration Dataset(/home/me/dl-101/DataLad-
→˓101/midterm_project)
[INFO] Discovered sibling here in dataset at /home/me/dl-101/DataLad-101/midterm_project
[INFO] Discovered sibling github in dataset at /home/me/dl-101/DataLad-101/midterm_
→˓project
[INFO] Finished checking pre-existing sibling configuration Dataset(/home/me/dl-101/
→˓DataLad-101/midterm_project)
[INFO] create siblings 'ria-backup' and 'ria-backup-storage' ...
[INFO] Fetching updates for Dataset(/home/me/dl-101/DataLad-101/midterm_project)
[INFO] Configure additional publication dependency on "ria-backup-storage"
create-sibling-ria(ok): /home/me/dl-101/DataLad-101/midterm_project (dataset)

$ datalad push --to ria-backup
[INFO] Start enumerating objects
[INFO] Start counting objects
[INFO] Start compressing objects
[INFO] Start writing objects
[INFO] Start enumerating objects
[INFO] Start counting objects
[INFO] Start compressing objects
[INFO] Start writing objects
copy(ok): .datalad/environments/midterm-software/image (file) [to ria-backup-storage...]
copy(ok): pairwise_relationships.png (file) [to ria-backup-storage...]
copy(ok): prediction_report.csv (file) [to ria-backup-storage...]
publish(ok): . (dataset) [refs/heads/master->ria-backup:refs/heads/master [new branch]]
publish(ok): . (dataset) [refs/heads/git-annex->ria-backup:refs/heads/git-annex [new␣
→˓branch]]

Find out more

Take a look into the RIA store after a second dataset has been added
With creating a RIA sibling to the RIA store and publishing the contents of the
midterm_project subdataset to the store, a second dataset has been added to the data-
store. Note how it is represented on the same hierarchy level as the previous dataset,
underneath its dataset ID:

$ cat .datalad/config
[datalad "dataset"]

id = 49864bd6-9069-11ea-96fe-833ef2c0cd3b
[datalad "containers.midterm-software"]

updateurl = shub://adswa/resources:1
image = .datalad/environments/midterm-software/image
cmdexec = singularity exec {img} {cmd}

15.5. Remote Indexed Archives for dataset storage and backup 267

The DataLad Handbook, Release 0.12.0+519.g04985082

$ tree /home/me/myriastore
/home/me/myriastore

07c
74330-9069-11ea-96fe-833ef2c0cd3b

annex
objects

F1
Wz

MD5E-s4242644--f4e1c8ebfb5c89a69ff6d268eb2e63e3.pdf
MD5E-s4242644--f4e1c8ebfb5c89a69ff6d268eb2e63e3.pdf

G6
Gj

MD5E-s12465653--05cd7ed561d108c9bcf96022bc78a92c.pdf
MD5E-s12465653--05cd7ed561d108c9bcf96022bc78a92c.pdf

jf
3M

MD5E-s2120211--06d1efcb05bb2c55cd039dab3fb28455.pdf
MD5E-s2120211--06d1efcb05bb2c55cd039dab3fb28455.pdf

WF
Gq

MD5E-s1198170--0ab2c121bcf68d7278af266f6a399c5f.pdf
MD5E-s1198170--0ab2c121bcf68d7278af266f6a399c5f.pdf

archives
branches
config
description
HEAD
hooks

applypatch-msg.sample
commit-msg.sample
fsmonitor-watchman.sample
post-update.sample
pre-applypatch.sample
pre-commit.sample
prepare-commit-msg.sample
pre-push.sample
pre-rebase.sample
pre-receive.sample
update.sample

info
exclude

objects
info
pack

pack-409dd939dfa96072f004f939868d0fcbc41dd767.idx
pack-409dd939dfa96072f004f939868d0fcbc41dd767.pack
pack-b0874468fd957dcd4a602a730aabaceeaef42afa.idx
pack-b0874468fd957dcd4a602a730aabaceeaef42afa.pack

ora-remote-33f4615c-dddd-4f49-9e81-2c357e427f63
transfer

refs
heads

git-annex
master

tags
ria-layout-version

498
64bd6-9069-11ea-96fe-833ef2c0cd3b

annex
objects

VF
27

MD5E-s347--7d984f53676358222aa7aa55980f205b.csv
MD5E-s347--7d984f53676358222aa7aa55980f205b.csv

xZ
pk

MD5E-s175447--1f7f416d7c317c1f6208a940aa50c700.png
MD5E-s175447--1f7f416d7c317c1f6208a940aa50c700.png

zJ
8f

MD5E-s232214559--49dcb6ac1a5787636c9897c4d4df7e10
MD5E-s232214559--49dcb6ac1a5787636c9897c4d4df7e10

archives
branches
config
description
HEAD
hooks

applypatch-msg.sample
commit-msg.sample
fsmonitor-watchman.sample
post-update.sample
pre-applypatch.sample
pre-commit.sample
prepare-commit-msg.sample
pre-push.sample
pre-rebase.sample
pre-receive.sample
update.sample

info
exclude

objects
01

6a67d14e520cbd435f178f3647e92d65cc41e6
03

9aaa442e10f3d941861bf415c232ef79623ff8
07

9d97c367520b1291fe2b4c6abeb862371b02ab
09

f265aa5fb7f8335e71eca38ea3765c55422ade
0b

9c1e2db0a572806c59e331eb9659520f9b84b8
11

9ff044791a6e5fbe8d98bab341001d97e9feb7
16

24268838a9df78c6b45067d3e51a54cd24265c
17

79c7a04c92b5063882079ac7c939b16737cf8f
1b

884a75d32efbcf9e470c79aad44b36d5212fcd
e7f989909d57adc3cbf391a003eb180b9201d4

1e
d9d2f6b504b19c0f01816178233c68835f758c

20
b7722d57db1eb57a1f23c2a2195a6924991d76

25
e586ecfb4e7f5c4e721a27aa89a91328fbb0b3
fce1e390322c8c6c5730abf664dcc1fa4a9482

26
058d30d26912dc073d04e4d941a7aa58f56a8e

28
5b49c93e70d2f424a1587c4bee0839aef04ce0
b0b472bd0803c463b92835a5354eb6dd9ed87d

2d
a25fc76e159a7282fb15ddccfd283bb8209adc
aafe9f4c2197f3a71e6ba57ccb38537a3ffee1

2e
8b77a098853cb47ef3aa8ff9bb9434f3b490a9
dc2849d6d80079e0dd4654ea2d2be588535b5d

30
ddc631b6be71192d54c59a0332f50e9712e039

34
328e2631ce2083fab97fe14a74f323436e9b10
adffd2533a202c50ffddc4c704735cbd85ac7e

35
26135630732215ca9ac3e6685de7749d08194b

36
65051e51d9cf1a394810796e3f8860d307eb4e

41
e377d4a16c9d9d0a0ccd759e4a97b9fe1c842c

42
d194b1b34e12bf285dffeb4805bc1d69f537a8

43
4a2c841e0afb5889a56c9d681f1e368e1cba95

44
ae8d678b8457faaa9f61d48dfdf1ed352726ec

45
61c9262bb471ee71d29e2d7bdc293984f49968

46
aa9052a302b33fed9f4b8b7cb6c42a7cbb468b

49
0c2273d9e84484a2975168f26cf74fb6f67e3e

4b
825dc642cb6eb9a060e54bf8d69288fbee4904

4d
f64f42f48b1a4967db997220bbf0f0dd8cfa87

54
582be6c832e9fd930093888449c7402672b4f2

5b
2146b6a5b2cd63e18d88e2a89842d302513fcd

5e
19ac4ced001dd4dcd6ce35402a4d6faf2063b4

5f
760a2bffeec5a70bb57556b317a56260171ee5

67
01d6df9a2ff757d18a527221bcc0495ab23871
9b57f861f0bdda966c050cfa255c4ef845169f

6c
ad10336e597e4a116b08238ecd14e9736601b1

6d
aecfb63901745da4092a65d6845595aaba159d

6e
06b1855a8f46cb0e75e463d494d4925e7d7ee8

75
ed15d4e993800cd3941834b320307473aeec2f

76
5aa87cb2195464eaaf6111d6fc05a9858088b3

7a
8e02e5fe51410a762028bb580d312c726acc04

7b
30b1622e25b5caec3aa14b3f134963bef5c303

80
0282a43f30b90c404a5013a66176e42660f7dd

84
a246e40bee01cb7874214aec54f2647fe9ae4e

86
25fb149e1a9f75078aa07ff99731bf53a28e39
5f587d62f77a67bc668ac19f0dbde14a9ba5a3
fcfb86393bb514a81fa8f2e566c258b5ba3c30

91
492d48edfb8fca8c69cf2d954fc513bf127048

92
b29f29f48ae0de816b1b482c5e25af6b050c9a

94
b570eac65b1d11c79fed128d3e95ffeff6ef92

95
9a71b5b3546cb2218aa592bf597f72d12b3341

96
4e52c11eab853d85eeb253fe8770bf654a6c6d
aab3752c464da88a1a9288dd3c02285ee0b882

97
55c04f77cbf8be067a6885522bac2a90d906b7

a3
0b54dacb69f02c8235e577d50030fa3a7ff817

a9
1de06229ed56b3dd48b1e28723594c50b61c6f

aa
4dd0adc688b3bca67067faa8fd37121f786acb

ab
192239fd08666c72e4e97a4563d5c4b749e3e1
a0db2ba59d95c681d7024c512d902c5ff58359

b1
bfb8febf9f78beb91b898e67f2431e0c8e2299

b4
6a2d5a30bbe8e012cab29849675a7633aa5afc

b5
40820107ca5718dc0f196a08edf3729239bfef

b9
73796f0bf3393e4ae3744d958f971a99764568
e8811d4f0c5d9231eec689bbd54f110d901ec9

bb
587281e08622cec88d67a9dcb97763ecc48535

bd
519d3db8032b5e41601791510a384d22039c2f

bf
c49c8259c178003cfc12620587daa77382dab1

c3
aaefef9a2470b31ba9213350046ff7cde75737

c6
2daca519a2e572150adb1af280de9e974fba89

c7
005ee38bdb77d377914330261eb7ee5e67c9f1

ca
5f02fbeebb08100a0249854417092427c9809e
7219c669044afccbf4a8315dfe9172c4c68867

cc
974ed68198ef0208477ad155de9d5ad8bb3c71

d1
5e9004b0bb3398fcdd2a8499f878428bb0599a

d4
2ab9b01c97fead21e3fac008af6c3e10c7993f

d8
ccf5e3c852fa4550147f8bd81f2b1a500f10ec

db
8309b345037bd6a185f47c3b22d31d429a8d6e
b20986e68cf44f5798e4eea295a82d440e4097
daef1da3d90b63b0e8d3dcc5670ff53908e3d0

dc
cb06641e0bd0799f8cdaf9d5eb592b218afb75

e4
1d09b048b806266b3b6f575bf42f4d1f90ff4c

e6
9de29bb2d1d6434b8b29ae775ad8c2e48c5391

e8
e4cb494b5b94e27f6c8784ffd26eb9aefff120

ed
56908ba436877436cd3538026cad42e551799d

f0
0c32701c59d74813aade92baa6c6471c5ecf64
eb8b04fd93d0d26e2d1b1b166b883804766656

f4
65c12605f751c160a4de805c675cba32f7ff52

fc
f71e65253fed692b965d6f508624c5916429e6

fe
2f7b920392320c2f3930c659f5095a4c0d0ea9

info
pack

ora-remote-f5b5c7a3-7e00-4b1b-92a0-eb7687831c82
transfer

refs
heads

git-annex
master

tags
ria-layout-version

error_logs
ria-layout-version

133 directories, 143 files

15.5. Remote Indexed Archives for dataset storage and backup 268

The DataLad Handbook, Release 0.12.0+519.g04985082

Thus, in order to create and populate RIA stores, only the commands datalad
create-sibling-ria and datalad push are required.

Cloning and updating from RIA stores

Cloning from RIA stores is done via datalad clone from a ria+ URL, suffixed with a dataset
identifier. Depending on the protocol being used, the URLs are composed similarly to during
sibling creation:

• A URL to a RIA store on an SSH-accessible server takes the same format as before:
ria+ssh://[user@]hostname:/absolute/path/to/ria-store

• A URL to a RIA store on a local file system also looks like during sibling creation:
ria+file:///absolute/path/to/ria-store

• A URL for read (without annex) access to a store via http (e.g., to a RIA store
like store.datalad.org286, through which the HCP dataset is published) looks like this:
ria+http://store.datalad.org:/absolute/path/to/ria-store

The appropriate ria+ URL needs to be suffixed with a # sign and a dataset identifier. One way
this can be done is via the dataset ID. Here is how to clone the DataLad-101 dataset from the
RIA store using its dataset ID:

$ datalad clone ria+file:///home/me/myriastore#07c74330-9069-11ea-96fe-833ef2c0cd3b␣
→˓myclone
[INFO] Cloning dataset to Dataset(/home/me/dl-101/myclone)
[INFO] Attempting to clone from file:///home/me/myriastore/07c/74330-9069-11ea-96fe-
→˓833ef2c0cd3b to /home/me/dl-101/myclone
[INFO] Completed clone attempts for Dataset(/home/me/dl-101/myclone)
[INFO] Configure additional publication dependency on "ria-backup-storage"
configure-sibling(ok): . (sibling)
install(ok): /home/me/dl-101/myclone (dataset)
action summary:
configure-sibling (ok: 1)
install (ok: 1)

There are two downsides to this method: For one, it is hard to type, remember, and know the
dataset ID of a desired dataset. Secondly, if no additional path is given to datalad clone, the
resulting dataset clone would be named after its ID. An alternative, therefore, is to use an alias
for the dataset. This is an alternative dataset identifier that a dataset in a RIA store can be
configured with.

Find out more

Configure an alias for a dataset
In order to define an alias for an individual dataset in a store, one needs to create an
alias/ directory in the root of the datastore and place a symlink of the desired name to
the dataset inside of it. Here is how it is done, for the midterm project dataset:
First, create an alias/ directory in the store:

$ mkdir /home/me/myriastore/alias

Afterwards, place a symlink with a name of your choice to the dataset inside of it. Here,
we create a symlink called midterm_project:

286 http://store.datalad.org/

15.5. Remote Indexed Archives for dataset storage and backup 269

http://store.datalad.org/
../usecases/HCP_dataset.html

The DataLad Handbook, Release 0.12.0+519.g04985082

$ ln -s /home/me/myriastore/498/64bd6-9069-11ea-96fe-833ef2c0cd3b /home/me/
→˓myriastore/alias/midterm_project

Here is how it looks like inside of this directory:

$ tree /home/me/myriastore/alias
/home/me/myriastore/alias

midterm_project -> /home/me/myriastore/498/64bd6-9069-11ea-96fe-833ef2c0cd3b

1 directory, 0 files

Afterwards, the alias name, prefixed with a ~, can be used as a dataset identifier:

datalad clone ria+file:///home/me/myriastore#~midterm_project
[INFO] Cloning dataset to Dataset(/home/me/dl-101/midterm_project)
[INFO] Attempting to clone from file:///home/me/myriastore/alias/midterm_project to␣
→˓/home/me/dl-101/midterm_project
[INFO] Completed clone attempts for Dataset(/home/me/dl-101/midterm_project)
[INFO] Configure additional publication dependency on "ria-backup-storage"
configure-sibling(ok): . (sibling)
install(ok): /home/me/dl-101/midterm_project (dataset)
action summary:
configure-sibling (ok: 1)
install (ok: 1)

This makes it easier for others to clone the dataset and will provide a sensible default
name for the clone if no additional path is provided in the command.

The dataset clone is just like any other dataset clone. Contents stored in Git are present right
after cloning, while the contents of annexed files is not yet retrieved from the store and can be
obtained with a datalad get.

$ cd myclone
$ tree
.

books
bash_guide.pdf -> ../.git/annex/objects/WF/Gq/MD5E-s1198170--

→˓0ab2c121bcf68d7278af266f6a399c5f.pdf/MD5E-s1198170--0ab2c121bcf68d7278af266f6a399c5f.pdf
byte-of-python.pdf -> ../.git/annex/objects/F1/Wz/MD5E-s4242644--

→˓f4e1c8ebfb5c89a69ff6d268eb2e63e3.pdf/MD5E-s4242644--f4e1c8ebfb5c89a69ff6d268eb2e63e3.pdf
progit.pdf -> ../.git/annex/objects/G6/Gj/MD5E-s12465653--

→˓05cd7ed561d108c9bcf96022bc78a92c.pdf/MD5E-s12465653--05cd7ed561d108c9bcf96022bc78a92c.
→˓pdf

TLCL.pdf -> ../.git/annex/objects/jf/3M/MD5E-s2120211--
→˓06d1efcb05bb2c55cd039dab3fb28455.pdf/MD5E-s2120211--06d1efcb05bb2c55cd039dab3fb28455.pdf

code
list_titles.sh
nested_repos.sh

Gitjoke2.txt
midterm_project
notes.txt
recordings

interval_logo_small.jpg
longnow
podcasts.tsv
salt_logo_small.jpg

(continues on next page)

15.5. Remote Indexed Archives for dataset storage and backup 270

The DataLad Handbook, Release 0.12.0+519.g04985082

(continued from previous page)

5 directories, 11 files

To demonstrate file retrieval from the store, let’s get an annexed file:

$ datalad get books/progit.pdf
get(ok): books/progit.pdf (file) [from ria-backup-storage...]

Find out more

What about creating RIA stores and cloning from RIA stores with different protocols
Consider setting up and populating a RIA store on a server via the file protocol, but
cloning a dataset from that store to a local computer via SSH protocol. Will this be a
problem for file content retrieval? No, in all standard situations, DataLad will adapt to
this. Upon cloning the dataset with a different URL than it was created under, enabling
the special remote will initially fail, but DataLad will adaptively try out other URLs (in-
cluding changes in hostname, path, or protocol) to enable the ora-remote and retrieve
file contents.

Just as expected, the subdatasets are not pre-installed. How will subdataset installation work
for datasets that exist in a RIA store as well, like midterm_project? Just as with any other sub-
dataset! DataLad cleverly handles subdataset installations from RIA stores in the background:
The location of the subdataset in the RIA store is discovered and used automatically:

$ datalad get -n midterm_project
[INFO] Cloning dataset to Dataset(/home/me/dl-101/myclone/midterm_project)
[INFO] Attempting to clone from /home/me/myriastore/07c/74330-9069-11ea-96fe-833ef2c0cd3b/
→˓midterm_project to /home/me/dl-101/myclone/midterm_project
[INFO] Attempting to clone from file:///home/me/myriastore/498/64bd6-9069-11ea-96fe-
→˓833ef2c0cd3b to /home/me/dl-101/myclone/midterm_project
[INFO] Completed clone attempts for Dataset(/home/me/dl-101/myclone/midterm_project)
[INFO] Configure additional publication dependency on "ria-backup-storage"
install(ok): /home/me/dl-101/myclone/midterm_project (dataset) [Installed subdataset in␣
→˓order to get /home/me/dl-101/myclone/midterm_project]

More technical insights into the automatic ria+ URL generation are outlined in the findoutmore
below:

Find out more

On cloning datasets with subdatasets from RIA stores
The usecase Scaling up: Managing 80TB and 15 million files from the HCP release
(page 339) details a RIA-store based publication of a large dataset, split into a nested
dataset hierarchy with about 4500 subdatasets in total. But how can links to subdatasets
work, if datasets in a RIA store are stored in a flat hierarchy, with no nesting?
The key to this lies in flexibly regenerating subdataset’s URLs based on their ID and a
path to the RIA store. The datalad get command is capable of generating RIA URLs to
subdatasets on its own, if the higher level dataset contains a datalad get configuration
on subdataset-source-candidate-origin that points to the RIA store the subdataset is
published in. Here is how the .datalad/config configuration looks like for the top-level
dataset of the HCP dataset287:

15.5. Remote Indexed Archives for dataset storage and backup 271

https://github.com/datalad-datasets/human-connectome-project-openaccess

The DataLad Handbook, Release 0.12.0+519.g04985082

[datalad "get"]
subdataset-source-candidate-origin = "ria+http://store.datalad.org#{id}"

With this configuration, a datalad get can use the URL and insert the dataset ID in
question into the {id} placeholder to clone directly from the RIA store.
This configuration is automatically added to a dataset that is cloned from a RIA store,
but it can also be done by hand with a git config command300.

287 https://github.com/datalad-datasets/human-connectome-project-openaccess
300 To re-read on configuring datasets with the git config, go back to sections DIY configurations

(page 108) and More on DIY configurations (page 114).

Beyond straightforward access to datasets, RIA stores also allow very fine-grained cloning op-
erations: Datasets in RIA stores can be cloned in specific versions.

Find out more

Cloning specific dataset versions
Optionally, datasets can be cloned in a specific version, such as a tag or branch by ap-
pending @<version-identifier> after the dataset ID or the dataset alias. Here is how
to clone the BIDS288 version of the structural preprocessed subset of the HCP dataset289

that exists on the branch bids of this dataset:

$ datalad clone ria+http://store.datalad.org#~hcp-structural-preprocessed@bids

If you are interested in finding out how this dataset came into existence, checkout the
use case Scaling up: Managing 80TB and 15 million files from the HCP release (page 339).

288 https://bids.neuroimaging.io/
289 https://github.com/datalad-datasets/hcp-structural-preprocessed

Updating datasets works with the datalad update and datalad update --merge commands
introduced in chapter Collaboration (page 83). And because a RIA store hosts bare Git reposito-
ries, collaborating becomes easy. Anyone with access can clone the dataset from the store, add
changes, and push them back – this is the same workflow as for datasets hosted on sites such as
GitHub, GitLab, or Gin.

Permission management

In order to limit access or give access to datasets in datastores, permissions can be set at the
time of RIA sibling creation with the --shared option. If it is given, this option configures the
permissions in the RIA store for multi-users access. Possible values for this option are identical
to those of git init --shared and are described in its documentation290. In order for the
dataset to be accessible to everyone, for example, --shared all could be specified. If access
should be limited to a particular Unix group291 (--shared group), the group name needs to be
specified with the --group option.

290 https://git-scm.com/docs/git-init#Documentation/git-init.txt---sharedfalsetrueumaskgroupallworldeverybody0xxx
291 https://en.wikipedia.org/wiki/File_system_permissions#Traditional_Unix_permissions

15.5. Remote Indexed Archives for dataset storage and backup 272

https://bids.neuroimaging.io/
https://github.com/datalad-datasets/hcp-structural-preprocessed
https://git-scm.com/docs/git-init#Documentation/git-init.txt---sharedfalsetrueumaskgroupallworldeverybody0xxx
https://en.wikipedia.org/wiki/File_system_permissions#Traditional_Unix_permissions

The DataLad Handbook, Release 0.12.0+519.g04985082

Configurations and tricks to hide technical layers

In setups with a central, DataLad-centric datamanagement, in order to spare users knowing
about RIA stores, custom configurations can be distributed via DataLad’s run-procedures to
simplify workflows further and hide the technical layers of the RIA setup. For example, custom
procedures provided at dataset creation could automatically perform a sibling setup in a RIA
store, and also create an associated GitLab repository with a publication dependency to the RIA
store to ease publishing data or cloning the dataset. The usecase Building a scalable data storage
for scientific computing (page 352) details the setup of RIA stores in a scientific institute and
demonstrates this example.

To simplify repository access beyond using aliases, the datasets stored in a RIA store can be in-
stalled under human-readable names in a single superdataset. Cloning the superdataset exposes
the underlying datasets under a non-dataset-ID name. Users can thus get data from datasets
hosted in a datastore without any knowledge about the dataset IDs or the need to construct
ria+ URLs, just as it was done in the usecases Scaling up: Managing 80TB and 15 million files
from the HCP release (page 339) and Building a scalable data storage for scientific computing
(page 352). From a user’s perspective, the RIA store would thus stay completely hidden.

Standard maintenance tasks by data stewards with knowledge about RIA stores and access to it
can be performed easily or even in an automated fashion. The usecase Building a scalable data
storage for scientific computing (page 352) showcases some examples of those operations.

Summary

RIA stores are useful, lean, and undemanding storage locations for DataLad datasets. Their
properties make them suitable solutions to back-up, central data management, or collaboration
use cases. They can be set up with minimal effort, and the few technical details a user may face
such as cloning from dataset IDs can be hidden with minimal configurations of the store like
aliases or custom procedures.

15.5. Remote Indexed Archives for dataset storage and backup 273

CHAPTER

SIXTEEN

GO BIG OR GO HOME

16.1 Going big with DataLad

All chapters throughout the Basics demonstrated “household quantity” examples. Version con-
trolling or analyzing data in datasets with a total size of up to a few hundred GB, with some
tens of thousands of files at maximum? Usually, this should work fine. If you want to go beyond
this scale, however, you should read this section to learn how to properly scale up. As a general

274

The DataLad Handbook, Release 0.12.0+519.g04985082

rule, consider this section relevant once you have a usecase in which you would go substantially
beyond 100k files in a single dataset.

The contents of this chapter exist thanks to some pioneers that took a leap and deep-dived into
gigantic data management challenges. You can read up on some of them in the usecases Scaling
up: Managing 80TB and 15 million files from the HCP release (page 339) and Building a scalable
data storage for scientific computing (page 352). Based on what we have learned so far from
these endeavours, this chapter encompasses principles, advice, and points of reference.

The introduction in this section illustrates the basic caveats when scaling up, and points to
benchmarks, rules of thumb, and general solutions. Upcoming sections demonstrate how one
can attempt large-scale analyses with DataLad, and how to fix things up when dataset sizes got
out of hand.

Why scaling up Git repos can become difficult

You already know that Git does not scale well with large files. As a Git repository stores every
version of every file that is added to it, large files that undergo regular modifications can inflate
the size of a·project significantly. Depending on how many large files are added to a pure Git
repository, this can not only have a devastating impact on the time it takes to clone, fetch, or pull
(from) a repository, but also on regular within-repository operations, such as checking the state
of the repository or switching branches. Using git-annex (either directly, or by using DataLad)
can eliminate this issue, but there is a second factor that can prevent scaling up with Git: The
number of files. One reason for this is that Git performs a large amount of stat system calls301

(used in git add and git commit). Repositories can thus suffer greatly if they are swamped
with files309.

Given that DataLad builds up on Git, having datasets with large amounts of files can lead to
painfully slow operations302. As a general rule of thumb, we will consider single datasets with
100k files or more as “big” for the rest of this chapter. Starting at about this size we can begin to
see performance issues in datasets. Benchmarking in DataLad datasets with varying, but large
amounts of tiny files on different file systems and different git-annex repository versions show
that a mere datalad save or datalad status command can take from 15 minutes up to several
hours. Its neither fun nor feasible to work with performance drops like this – so how can this
be avoided?

General advice: Use several subdatasets

The general set-up for publishing or version controlling data in a scalable way is to make use
of subdatasets. Instead of a single dataset with 1 million files, have 20, for example, with
50.000 files each, and link them as subdataset. This will split the amount of files that need to
be handled across several datasets, and, at the same time, it also alleviates strain on the file
system that would arise if large amounts of files are kept in single directories.

301 https://en.wikipedia.org/wiki/Stat_(system_call)
309 For example: A Git repository with more than a million (albeit tiny) files takes hours and hours to merely

create310, if standard Git workflows are used. This post311 contains an entertaining description of what happens
if one attempts to create a Git repository with 6.5 million files – up to the point when some Git commands stop
working.

310 https://www.monperrus.net/martin/one-million-files-on-git-and-github
311 https://breckyunits.com/building-a-treebase-with-6-point-5-million-files.html
302 https://github.com/datalad/datalad/issues/3869

16.1. Going big with DataLad 275

https://en.wikipedia.org/wiki/Stat_(system_call)
https://github.com/datalad/datalad/issues/3869
https://www.monperrus.net/martin/one-million-files-on-git-and-github
https://www.monperrus.net/martin/one-million-files-on-git-and-github
https://breckyunits.com/building-a-treebase-with-6-point-5-million-files.html

The DataLad Handbook, Release 0.12.0+519.g04985082

How would that look like for a large scale dataset? In the use case Scaling up: Managing
80TB and 15 million files from the HCP release (page 339), 80 million files with neuroscientific
data from about 1200 participants are split into roughly 4500 subdatasets based on directory
structure. Each participant directory is a subdataset, and it contains several more subdatasets,
depending on how much data modalities are available. A similar approach was chosen for the
Datalad UKbiobank extension303 that can enable to obtain and version control imaging releases
of the up to 100000 participants of the UKbiobank project304.

“But why use DataLad for this?” In principle, using many instead of a single repository/dataset
for large amounts of files is a measure that can be implemented with any of the tools involved,
be it Git, git-annex, or DataLad. What makes using DataLad well-suited for such a scaling
approach and distinguishes it from Git and git-annex, is that it is way easier to link datasets and
to operate across subdataset boundaries recursively with the nesting capabilities312 of DataLad.
Git provides functionality for nested repositories (so-called submodules, also used by DataLad
underneath the hood), but the workflows are by far not as smooth. For a direct comparison
between working with nested datasets and nested Git repositories, take a look at this demo305.

How far does this scale? In preparation for assembling a complete UKBiobank dataset, simu-
lations of datasets with 40k and 100k subdatasets ran successfully.

Find out more

How do simulations like this work?
With shell scripts such as this:

303 https://github.com/datalad/datalad-ukbiobank
304 https://www.ukbiobank.ac.uk/
312 To reread on nesting DataLad datasets, check out sections Dataset nesting (page 46) and More on Dataset nesting

(page 157)
305 https://youtu.be/Yrg6DgOcbPE?t=350

16.1. Going big with DataLad 276

https://github.com/datalad/datalad-ukbiobank
https://www.ukbiobank.ac.uk/
https://youtu.be/Yrg6DgOcbPE?t=350

The DataLad Handbook, Release 0.12.0+519.g04985082

#!/bin/bash
set -x

build a dummy subdataset to be referenced 40k times:
datalad create dummy_sub
echo "whatever" > dummy_sub/some_file
datalad save -d dummy_sub

sub_id=$(datalad -f "{infos[dataset][id]}" wtf -d dummy_sub)
sub_commit=$(git -C dummy_sub show --no-patch --format=%H)

the actual super dataset and use some config procedure to get
an initial history
datalad create -c yoda dummy_super_40k

cd dummy_super_40k

for ((i=1;i<=100000;i++)); do
git config -f .gitmodules "submodule.sub$i.path" "sub$i";
git config -f .gitmodules "submodule.sub$i.url" ../dummy_sub;
git config -f .gitmodules "submodule.sub$i.datalad-id" "$sub_id";
git update-index --add --replace --cacheinfo 160000 "$sub_commit" "sub$i";

done;

git add .gitmodules
git commit -m "Add submodules"

Note that this way of simulating subdatasets is speedier and simplified, because instead
of cloning subdatasets, it makes use of Git’s update-index306 command and records the
subdatasets by committing manual changes to .gitmodules.

306 https://git-scm.com/docs/git-update-index

Do note, however, that these numbers of subdatasets may well exhaust your file system’s subdi-
rectory limit (commonly at 64k).

Tool-specific and smaller advice

• If you are interested in up-to-date performance benchmarks, take a look at
www.datalad.org/test_fs_analysis.html307. This can help to set expectations and give use-
ful comparisons of file systems or software versions.

• git-annex offers a range of tricks to further improve performance in large datasets. For
example, it may be useful to not use a standalone git-annex build, but a native git-annex
binary (see this comment308)

• Status reports in datasets with large amounts of files and/or subdatasets can be expensive.
Check out the Gist Speed up status reports in large datasets (page 241) for solutions.

Todo: More here

307 https://www.datalad.org/test_fs_analysis.html
308 https://github.com/datalad/datalad/issues/3869#issuecomment-557598390

16.1. Going big with DataLad 277

https://git-scm.com/docs/git-update-index
https://www.datalad.org/test_fs_analysis.html
https://github.com/datalad/datalad/issues/3869#issuecomment-557598390

The DataLad Handbook, Release 0.12.0+519.g04985082

16.2 Calculate in greater numbers

When creating and populating datasets yourself it may be easy to monitor the overall size of the
dataset and its file number, and introduce subdatasets whenever and where ever necessary. It
may not be as straightforward when you are not population datasets yourself, but when software
or analyses scripts suddenly dump vast amounts of output. Certain analysis software can create
myriads of files. A standard FEAT analysis313316in FSL314, for example, can easily output several
dozens of directories and up to thousands of result files per subject. Maybe your own custom
scripts are writing out many files as outputs, too. Regardless of why a lot of files are produced
by an analyses, if the analysis or software in question runs on a substantially sized input dataset,
the results may overwhelm the capacities of a single dataset.

This section demonstrates some tips on how to prevent swamping your datasets with files. If you
already accidentally got stuck with an overflowing dataset, checkout section Fixing up too-large
datasets (page 280) first.

Solution: Subdatasets

To stick to the example of FEAT, here is a quick overview on what this software does: It is
modelling neuroimaging data based on general linear modelling (GLM), and creates web page
analyses reports, color activation images, time-course plots of data and model, preprocessed
intermediate data, images with filtered data, statistical output images, colour rendered output
images, log files, and many more – in short: A LOT of files. Plenty of these outputs are text-
based, but there are also many sizable files. Depending on the type of analysis, not all types of
outputs will be relevant. At the end of the analysis, one usually has session-, subject-specific, or
aggregated “group” directories with many subdirectories filled with log files, intermediate and
preprocessed files, and results for all levels of the analysis.

In such a setup, the output directories (be it on a session/run, subject, or group level) are
predictably named, or custom nameable. In order to not flood a single dataset, therefore, one
can pre-create appropriate subdatasets of the necessary granularity and have them filled by
their analyses. This approach is by no means limited to analyses with certain software, and
can be automated. For scripting languages other than Python or shell, standard system calls
can create output directories as DataLad subdatasets right away, Python scripts can even use
DataLad’s Python API318. Thus, you can create scripts that take care of subdataset creation, or,
if you write analysis scripts yourself, you can take care of subdataset creation right in the scripts
that are computing and saving your results.

As it is easy to link datasets and operate (e.g., save, clone) across dataset hierarchies, splitting
datasets into a hierarchy of datasets does not have many downsides. One substantial disadvan-
tage, though, is that on their own, results in subdirectories don’t have meaningful provenance
attached. The information about what script or software created them is attached to the su-
perdataset. Should only the subdataset be cloned or inspected, the information on how it was
generated is not found.

313 https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FEAT/UserGuide
316 FEAT is a software tool for model-based fMRI data analysis and part of of FSL317.
317 https://fsl.fmrib.ox.ac.uk/fsl/fslwiki
314 https://fsl.fmrib.ox.ac.uk/fsl/fslwiki
318 Read more about DataLad’s Python API in the first hidden section in YODA-compliant data analysis projects

(page 137).

16.2. Calculate in greater numbers 278

https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FEAT/UserGuide
https://fsl.fmrib.ox.ac.uk/fsl/fslwiki
https://fsl.fmrib.ox.ac.uk/fsl/fslwiki

The DataLad Handbook, Release 0.12.0+519.g04985082

Solutions without creating subdatasets

It is also possible to scale up without going through the complexities of creating several sub-
datasets, or tuning your scaling beyond the creation of subdatasets. It involves more thought,
or compromising, though. The following section highlights a few caveats to bear in mind if
you attempt a big analyses in single-level datasets, and outlines solutions that may not need to
involve subdatasets. If you have something to add, please get in touch315.

Too many files

Caveat: Drown a dataset with too many files.

Examples: The FSL FEAT analysis mentioned in the introduction produces several 100k files,
but not all of these files are important. tsplot/, for example, is a directory that contains time
series plots for various data and results, and may be of little interested for many analyses once
general quality control is done.

Solutions:

• Don’t put irrelevant files under version control at all: Consider creating a .gitignore file
with patterns that match files or directories that are of no relevance to you. These files
will not be version controlled or saved to your dataset. Section How to hide content from
DataLad (page 245) can tell you more about this. Be mindful, though: Having too many
files in a single directory can still be problematic for your file system. A concrete example:
Consider your analyses create logfiles that are not precious enough to be version con-
trolled. Adding logs/* to your .gitignore file and saving this change will keep these files
out of version control.

• Similarly, you can instruct datalad run to save only specific directories or files by specify-
ing them with the --output option and executing the command with the --explicit flag.
This may be more suitable an approach if you know what you want to keep rather than
what is irrelevant.

Too many files in Git

Caveat: Drown Git because of configurations.

Example: If your dataset is configured with a configuration such as text2git or if you have
modified your .gitattributes file319 to store files below a certain size of certain types in Git
instead of git-annex, an excess of sudden text files can still be overwhelming in terms of total
file size. Several thousand, or tens of thousand, text files may still add up to several GB in size
even if they are each small in size.

Solutions:

• Add files to git-annex instead of Git: Consider creating custom largefile rules for di-
rectories that you generate these files in or for patterns that match file names that do
not need to be in Git. This way, these files will be put under git-annex’s version control.
A concrete example: Consider that your analyses output a few thousand textfiles into
all sub-*/correlations/ directories in your dataset. Appending sub-*/correlations/*

315 https://github.com/datalad-handbook/book/issues/new/
319 Read up on these configurations in the chapter Tuning datasets to your needs (page 108).

16.2. Calculate in greater numbers 279

https://github.com/datalad-handbook/book/issues/new/

The DataLad Handbook, Release 0.12.0+519.g04985082

annex.largefiles=anything to .gitattributes and saving this change will store all of in
the dataset’s annex instead of in Git.

• Don’t put irrelevant files under version control at all: Consider creating a .gitignore file
with patterns that match files or directories that are of no relevance to you. These files
will not be version controlled or saved to your dataset. Section How to hide content from
DataLad (page 245) can tell you more about this. Be mindful, though: Having too many
files in a single directory can still be problematic for your file system. A concrete example:
Consider your analyses create logfiles that are not precious enough to be version con-
trolled. Adding logs/* to your .gitignore file and saving this change will keep these files
out of version control.

Todo: Add more caveats and examples

16.3 Fixing up too-large datasets

The previous section highlighted problems of too large monorepos and advised strategies to
them prevent them. This section introduces some strategies to clean and fix up datasets that
got out of hand size-wise. If there are use cases you would want to see discussed here or propose
solutions for, please get in touch320.

Getting contents out of Git

Let’s say you did a datalad run with an analysis that put too many files under version control
by Git, and you want to see them gone. Sticking to the FSL FEAT analysis example from earlier,
you may, for example, want to get rid of every tsplot directory, as it contains results that are
irrelevant for you.

Note that there is no way to drop the files as they are in Git instead of git-annex. Removing the
files with plain filesystem (rm, git rm) operation also does not shrink your dataset. The files are
snapshot and even though they don’t exist in the current state of your dataset anymore, they still
exist – and thus clutter – your datasets history. In order to really get committed files out of Git,
you need to rewrite history. And for this you need heavy machinery: git-filter-repo321324. It is
a powerful and potentially dangerous tool to rewrite Git history. Treat this tool like a chainsaw.
Very helpful for heavy duty tasks, but also life-threatening. The command git-filter-repo
<path-specification> --force will “filter-out”, i.e., remove all files but the ones specified in
<path-specification> from the datasets history. Before you use it, please make sure to read its
help page thoroughly.

320 https://github.com/datalad-handbook/book/issues/new/
321 https://github.com/newren/git-filter-repo
324 Wait, what about git filter-branch? Beyond better performance of git-filter-repo, Git also discourages

the use of filter-branch for safety reasons and points to git-filter-repo as an alternative. For more background
info, see this thread325.

325 https://lore.kernel.org/git/CABPp-BEr8LVM+yWTbi76hAq7Moe1hyp2xqxXfgVV4_teh_9skA@mail.gmail.
com/

16.3. Fixing up too-large datasets 280

https://github.com/datalad-handbook/book/issues/new/
https://github.com/newren/git-filter-repo
https://lore.kernel.org/git/CABPp-BEr8LVM+yWTbi76hAq7Moe1hyp2xqxXfgVV4_teh_9skA@mail.gmail.com/

The DataLad Handbook, Release 0.12.0+519.g04985082

Find out more

Installing git-filter-repo
git-filter-repo is not part of Git but needs to be installed separately. Its GitHub repos-
itory322 contains more and more detailed instructions, but it is possible to install via
pip (pip install git-filter-repo), and available via standard package managers for
MacOS and some Linux distributions (mostly rpm-based ones).

322 https://github.com/newren/git-filter-repo

The general procedure you should follow is the following:

1. datalad clone the repository. This is a safeguard to protect your dataset should something
go wrong. The clone you are creating will be your new, cleaned up dataset.

2. datalad get all the dataset contents by running datalad get . in the clone.

3. git-filter-repo what you don’t want anymore (see below)

4. Run git annex unused and a subsequent git annex dropunused all to remove stale file
contents that are not referenced anymore.

5. Finally, do some aggressive garbage collection323 with git gc --aggressive

In order to get a hang on the git-filter-repo step, consider a directory structure similar to
this exemplary run-wise FEAT analysis output structure:

$ tree
sub-*/run-*_<task>-<level>.feat

custom_timing_files
logs
reg
reg_standard

reg
stats

stats
tsplot

Each of such sub-* directories contains about 3000 files, and the majority of them are irrelevant
textfiles in tsplot/. In order to remove them for all subjects and runs from the dataset history,
the following command can be used:

$ git-filter-repo --path-regex '^sub-[0-9]{2}/run-[0-9]{1}*.feat/tsplot/.*$' --invert-
→˓paths --force

The --path-regex and the regex expression '^sub-[0-9]{2}/run-[0-9]{1}*.feat/tsplot/.
*$'326match all file paths inside of the tsplot/ directories of all subjects and runs. The option
--invert-paths then inverts this path specification, and leads to only the files in tsplot/ to be
filtered out. Note that there are also non-regex based path specifications possible, for example

323 https://git-scm.com/docs/git-gc
326 Regular expressions can be a pain to comprehend if you’re not used to reading them. This one matches paths

that start with (^) sub- followed by exactly two ({2}) numbers that can be between 0 and 9 ([0-9]), followed by
/run- with exactly one ({1}) digit between 0 and 9 ([0-9]), followed by zero or more other characters (*) until
.feat/tsplot/, and ending ($) with any amount of any character (.*). Not exactly easy, but effective. One way to
practice reading regular expressions, if you’re interested in that, is by playing regex crossword327.

327 https://regexcrossword.com/

16.3. Fixing up too-large datasets 281

https://github.com/newren/git-filter-repo
https://github.com/newren/git-filter-repo
https://git-scm.com/docs/git-gc
https://regexcrossword.com/

The DataLad Handbook, Release 0.12.0+519.g04985082

with the option --path-match or path-glob, or with a specification placed in a file. Please see
the manual of git-filter-repo for more information.

16.4 Summary

If you want to go big, DataLad is a suitable tool and can overcome shortcomings of Git and git-
annex, if used correctly. Scaling up involves some thought, and in some instances compromise,
though.

• The general mechanism that allows scaling up is nesting datasets. This process can be
done by hand or programmatically. Recursive operations ease working across a hierarchy
of datasets and create a monorepo-like experience

• Beware of accidentally placing to many (even small) files into Git’s version control in a sin-
gle dataset! .gitignore files can keep irrelevant files out of version control, the explicit
option datalad run may be helpful, and custom largefile rules in .gitattributes may be
necessary to override dataset configurations such as text2git.

• Don’t consider only the limits of version control software, but also the limits of your file
system. Too many files in single directories can become problematic even without version
control.

• If things go wrong, it’s not all lost. There are ways to clean up your dataset if it ever gets
clogged, although they are the software equivalent of a blowtorch and should be handled
with care.

Now what can I do with it?

Go big, if you want to. Distribute 80TB of files or more328, or version control large analyses
with minimized performance loss of your version control tools.

328 https://github.com/datalad/datalad-ukbiobank

16.4. Summary 282

../usecases/HCP_dataset.html
https://github.com/datalad/datalad-ukbiobank

Part IV

Use cases

283

The DataLad Handbook, Release 0.12.0+519.g04985082

In this part of the book you will find concrete examples of DataLad applications for general
inspiration. You can get an overview of what is possible by browsing through them, and step-
by-step solutions for a range of problems in every single one. Provided you have read the
previous Basics (page 27) sections, the usecases’ code examples are sufficient (though sparser
than in Basics) to recreate or apply the solutions they demonstrate.

284

CHAPTER

SEVENTEEN

A TYPICAL COLLABORATIVE DATA MANAGEMENTWORKFLOW

This use case sketches the basics of a common, collaborative data management workflow for an
analysis:

1. A 3rd party dataset is obtained to serve as input for an analysis.

2. Data processing is collaboratively performed by two colleagues.

3. Upon completion, the results are published alongside the original data for further con-
sumption.

The data types and methods mentioned in this usecase belong to the scientific field of neu-
roimaging, but the basic workflow is domain-agnostic.

17.1 The Challenge

Bob is a new PhD student and about to work on his first analysis. He wants to use an open
dataset as the input for his analysis, so he asks a friend who has worked with the same dataset
for the data and gets it on a hard drive. Later, he’s stuck with his analysis. Luckily, Alice, a
senior grad student in the same lab, offers to help him. He sends his script to her via email and
hopes she finds the solution to his problem. She responds a week later with the fixed script,
but in the meantime Bob already performed some miscellaneous changes to his script as well.
Identifying and integrating her fix into his slightly changed script takes him half a day. When
he finally finishes his analysis, he wants to publish code and data online, but can not find a way
to share his data together with his code.

17.2 The DataLad Approach

Bob creates his analysis project as a DataLad dataset. Complying with the YODA principles329,
he creates his scripts in a dedicated code/ directory, and clones the open dataset as a standalone
DataLad subdataset within a dedicated subdirectory. To collaborate with his senior grad student
Alice, he shares the dataset on the lab’s SSH server, and they can collaborate on the version
controlled dataset almost in real time with no need for Bob to spend much time integrating the
fix that Alice provides him with. Afterwards, Bob can execute his scripts in a way that captures
all provenance for this results with a datalad run command. Bob can share his whole project
after completion by creating a sibling on a webserver, and pushing all of his dataset, including
the input data, to this sibling, for everyone to access and recompute.

329 http://handbook.datalad.org/en/latest/basics/101-123-yoda.html

285

http://handbook.datalad.org/en/latest/basics/101-123-yoda.html

The DataLad Handbook, Release 0.12.0+519.g04985082

17.3 Step-by-Step

Bob creates a DataLad dataset for his analysis project to live in. Because he knows about the
YODA principles, he configures the dataset to be a YODA dataset right at the time of creation:

$ datalad create -c yoda --description "my 1st phd project on work computer" myanalysis
[INFO] Creating a new annex repo at /home/me/usecases/collab/myanalysis
[INFO] Running procedure cfg_yoda
[INFO] == Command start (output follows) =====
[INFO] == Command exit (modification check follows) =====
create(ok): /home/me/usecases/collab/myanalysis (dataset)

After creation, there already is a code/ directory, and all of its inputs are version-controlled by
Git instead of git-annex thanks to the yoda procedure:

$ cd myanalysis
$ tree
.

CHANGELOG.md
code

README.md
README.md

1 directory, 3 files

Bob knows that a DataLad dataset can contain other datasets. He also knows that as any content
of a dataset is tracked and its precise state is recorded, this is a powerful method to specify and
later resolve data dependencies, and that including the dataset as a standalone data component
will it also make it easier to keep his analysis organized and share it later. The dataset that Bob
wants to work with is structural brain imaging data from the studyforrest project330, a public
data resource that the original authors share as a DataLad dataset through GitHub. This means
that Bob can simply clone the relevant dataset from this service and into his own dataset. To do
that, he clones it as a subdataset into a directory he calls src/ as he wants to make it obvious
which parts of his analysis steps and code require 3rd party data:

$ datalad clone -d . https://github.com/psychoinformatics-de/studyforrest-data-structural.
→˓git src/forrest_structural
[INFO] Cloning https://github.com/psychoinformatics-de/studyforrest-data-structural.git␣
→˓[1 other candidates] into '/home/me/usecases/collab/myanalysis/src/forrest_structural'
[INFO] Remote origin not usable by git-annex; setting annex-ignore
add(ok): src/forrest_structural (file)
save(ok): . (dataset)
install(ok): src/forrest_structural (dataset)
action summary:
add (ok: 1)
install (ok: 1)
save (ok: 1)

Now that he executed this command, Bob has access to the entire dataset content, and the
precise version of the dataset got linked to his top-level dataset myanalysis. However, no data
was actually downloaded (yet). Bob very much appreciates that DataLad datasets primarily
contain information on a dataset’s content and where to obtain it: Cloning above was done
rather quickly, and will still be relatively lean even for a dataset that contains several hundred

330 http://studyforrest.org/

17.3. Step-by-Step 286

http://studyforrest.org/

The DataLad Handbook, Release 0.12.0+519.g04985082

GBs of data. He knows that his script can obtain the relevant data he needs on demand if he
wraps it into a datalad run command and therefore does not need to care about getting the
data yet. Instead, he focuses to write his script code/run_analysis.sh. To save this progress,
he runs frequent datalad save commands:

$ datalad save -m "First steps: start analysis script" code/run_analysis.py
add(ok): code/run_analysis.py (file)
save(ok): . (dataset)
action summary:
add (ok: 1)
save (ok: 1)

Once Bob’s analysis is finished, he can wrap it into datalad run. To ease execution, he first
makes his script executable by adding a shebang that specifies Python as an interpreter at the
start of his script, and giving it executable permissions:

$ chmod +x code/run_analysis.py
$ datalad save -m "make script executable"
add(ok): code/run_analysis.py (file)
save(ok): . (dataset)
action summary:
add (ok: 1)
save (ok: 1)

Importantly, prior to a datalad run, he specifies the necessary inputs such that DataLad can
take care of the data retrieval for him:

$ datalad run -m "run first part of analysis workflow" \
--input "src/forrest_structural" \
--output results.txt \
"code/run_analysis.py"

[INFO] Making sure inputs are available (this may take some time)
[INFO] == Command start (output follows) =====
[INFO] == Command exit (modification check follows) =====
get(ok): src/forrest_structural/sub-01/anat/sub-01_T1w.nii.gz (file) [from mddatasrc...]
action summary:
get (notneeded: 1, ok: 1)
save (notneeded: 2)

This will take care of retrieving the data, running Bobs script, and saving all outputs.

Some time later, Bob needs help with his analysis. He turns to his senior grad student Alice
for help. Alice and Bob both work on the same computing server. Bob has told Alice in which
directory he keeps his analysis dataset, and the directory is configured to have permissions that
allow for read-access for all lab-members, so Alice can obtain Bob’s work directly from his home
directory:

$ datalad clone /myanalysis bobs_analysis
[INFO] Cloning myanalysis into '/home/me/usecases/collab/bobs_analysis'
install(ok): /home/me/usecases/collab/bobs_analysis (dataset)

$ cd bobs_analysis
... make contributions, and save them
$ [...]
$ datalad save -m "you're welcome, bob"

(continues on next page)

17.3. Step-by-Step 287

The DataLad Handbook, Release 0.12.0+519.g04985082

(continued from previous page)

add(ok): code/run_analysis.py (file)
save(ok): . (dataset)
action summary:
add (ok: 1)
save (ok: 1)

Alice can get the studyforrest data Bob used as an input as well as the result file, but she can
also rerun his analysis by using datalad rerun. She goes ahead and fixes Bobs script, and saves
the changes. To integrate her changes into his dataset, Bob registers Alice’s dataset as a sibling:

#in Bobs home directory
$ datalad siblings add -s alice --url '/bobs_analysis'
.: alice(+) [../bobs_analysis (git)]

Afterwards, he can get her changes with a datalad update --merge command:

$ datalad update -s alice --merge
[INFO] Fetching updates for <Dataset path=/home/me/usecases/collab/myanalysis>
[INFO] Applying updates to <Dataset path=/home/me/usecases/collab/myanalysis>
update(ok): . (dataset)

Finally, when Bob is ready to share his results with the world or a remote collaborator, he
makes his dataset available by uploading them to a webserver via SSH. Bob does so by creating
a sibling for the dataset on the server, to which the dataset can be published and later also
updated.

this generated sibling for the dataset and all subdatasets
$ datalad create-sibling --recursive -s public "$SERVER_URL"

Once the remote sibling is created and registered under the name “public”, Bob can publish his
version to it.

$ datalad push -r --to public .

This workflow allowed Bob to obtain data, collaborate with Alice, and publish or share his
dataset with others easily – he cannot wait for his next project, given that this workflow made
his life so simple.

17.3. Step-by-Step 288

CHAPTER

EIGHTEEN

BASIC PROVENANCE TRACKING

This use case demonstrates how the provenance of downloaded and generated files can be
captured with DataLad by

1. downloading a data file from an arbitrary URL from the web

2. perform changes to this data file and

3. capture provenance for all of this

Note: This section uses advanced Git commands and concepts on the side that are not covered
in the book. If you want to learn more about the Git commands shown here, the ProGit book331

is an excellent resource.

18.1 The Challenge

Rob needs to turn in an art project at the end of the high school year. He wants to make it as
easy as possible and decides to just make a photomontage of some pictures from the internet.
When he submits the project, he does not remember where he got the input data from, nor the
exact steps to create his project, even though he tried to take notes.

18.2 The DataLad Approach

Rob starts his art project as a DataLad dataset. When downloading the images he wants to use
for his project, he tracks where they come from. And when he changes or creates output, he
tracks how, when and why and this was done using standard DataLad commands. This will
make it easy for him to find out or remember what he has done in his project, and how it has
been done, a long time after he finished the project, without any note taking.

18.3 Step-by-Step

Rob starts by creating a dataset, because everything in a dataset can be version controlled and
tracked:

331 https://git-scm.com/book/en/v2

289

https://git-scm.com/book/en/v2

The DataLad Handbook, Release 0.12.0+519.g04985082

$ datalad create artproject && cd artproject
[INFO] Creating a new annex repo at /home/me/usecases/provenance/artproject
create(ok): /home/me/usecases/provenance/artproject (dataset)

For his art project, Rob decides to download a mosaic image composed of flowers from Wiki-
media. As a first step, he extracts some of the flowers into individual files to reuse them later.
He uses the datalad download-url command to get the resource straight from the web, but
also capture all provenance automatically, and save the resource in his dataset together with a
useful commit message:

$ mkdir sources
$ datalad download-url -m "Added flower mosaic from wikimedia" \
https://upload.wikimedia.org/wikipedia/commons/a/a5/Flower_poster_2.jpg \
--path sources/flowers.jpg

[INFO] Downloading 'https://upload.wikimedia.org/wikipedia/commons/a/a5/Flower_poster_2.
→˓jpg' into '/home/me/usecases/provenance/artproject/sources/flowers.jpg'
download_url(ok): /home/me/usecases/provenance/artproject/sources/flowers.jpg (file)
add(ok): sources/flowers.jpg (file)
save(ok): . (dataset)
action summary:
add (ok: 1)
download_url (ok: 1)
save (ok: 1)

If he later wants to find out where he obtained this file from, a git annex whereis333 command
will tell him:

$ git annex whereis sources/flowers.jpg
whereis sources/flowers.jpg (2 copies)

00000000-0000-0000-0000-000000000001 -- web
f630c8c8-8d1d-4da2-8432-b0a7c5c964dd -- me@muninn:~/usecases/provenance/

→˓artproject [here]

web: https://upload.wikimedia.org/wikipedia/commons/a/a5/Flower_poster_2.jpg
ok

To extract some image parts for the first step of his project, he uses the extract tool from
ImageMagick332 to extract the St. Bernard’s Lily from the upper left corner, and the pimpernel
from the upper right corner. The commands will take the Wikimedia poster as an input and
produce output files from it. To capture provenance on this action, Rob wraps it into datalad
run334 commands.

$ datalad run -m "extract st-bernard lily" \
--input "sources/flowers.jpg" \
--output "st-bernard.jpg" \
"convert -extract 1522x1522+0+0 sources/flowers.jpg st-bernard.jpg"
[INFO] Making sure inputs are available (this may take some time)
[INFO] == Command start (output follows) =====
[INFO] == Command exit (modification check follows) =====
add(ok): st-bernard.jpg (file)
save(ok): . (dataset)

(continues on next page)

333 If you want to learn more about git annex whereis, re-read section Where’s Waldo? (page 92).
332 https://imagemagick.org/index.php
334 If you want to learn more about datalad run, read on from section Keeping track (page 52).

18.3. Step-by-Step 290

https://imagemagick.org/index.php

The DataLad Handbook, Release 0.12.0+519.g04985082

(continued from previous page)

action summary:
add (ok: 1)
get (notneeded: 1)
save (ok: 1)

$ datalad run -m "extract pimpernel" \
--input "sources/flowers.jpg" \
--output "pimpernel.jpg" \
"convert -extract 1522x1522+1470+1470 sources/flowers.jpg pimpernel.jpg"

[INFO] Making sure inputs are available (this may take some time)
[INFO] == Command start (output follows) =====
[INFO] == Command exit (modification check follows) =====
add(ok): pimpernel.jpg (file)
save(ok): . (dataset)
action summary:
add (ok: 1)
get (notneeded: 1)
save (ok: 1)

He continues to process the images, capturing all provenance with DataLad. Later, he can
always find out which commands produced or changed which file. This information is easily
accessible within the history of his dataset, both with Git and DataLad commands such as git
log or datalad diff.

$ git log --oneline HEAD~3..HEAD
14d8e8f [DATALAD RUNCMD] extract pimpernel
999b4f5 [DATALAD RUNCMD] extract st-bernard lily
bc38bb3 Added flower mosaic from wikimedia

$ datalad diff -f HEAD~3
added: pimpernel.jpg (file)
added: sources/flowers.jpg (file)
added: st-bernard.jpg (file)

Based on this information, he can always reconstruct how an when any data file came to be –
across the entire life-time of a project.

He decides that one image manipulation for his art project will be to displace pixels of an image
by a random amount to blur the image:

$ datalad run -m "blur image" \
--input "st-bernard.jpg" \
--output "st-bernard-displaced.jpg" \
"convert -spread 10 st-bernard.jpg st-bernard-displaced.jpg"

[INFO] Making sure inputs are available (this may take some time)
[INFO] == Command start (output follows) =====
[INFO] == Command exit (modification check follows) =====
add(ok): st-bernard-displaced.jpg (file)
save(ok): . (dataset)
action summary:
add (ok: 1)
get (notneeded: 1)
save (ok: 1)

Because he is not completely satisfied with the first random pixel displacement, he decides to

18.3. Step-by-Step 291

The DataLad Handbook, Release 0.12.0+519.g04985082

retry the operation. Because everything was wrapped in datalad run, he can rerun the com-
mand. Rerunning the command will produce a commit, because the displacement is random
and the output file changes slightly from its previous version.

$ git log -1 --oneline HEAD
a6e322c [DATALAD RUNCMD] blur image

$ datalad rerun a6e322c794ef39bea0fb2a077f8eac293d943550
[INFO] Making sure inputs are available (this may take some time)
[INFO] == Command start (output follows) =====
[INFO] == Command exit (modification check follows) =====
unlock(ok): st-bernard-displaced.jpg (file)
add(ok): st-bernard-displaced.jpg (file)
save(ok): . (dataset)
action summary:
add (ok: 1)
get (notneeded: 1)
save (ok: 1)
unlock (ok: 1)

This blur also does not yet fulfill Robs expectations, so he decides to discard the change, using
standard Git tools335.

$ git reset --hard HEAD~1
HEAD is now at a6e322c [DATALAD RUNCMD] blur image

He knows that within a DataLad dataset, he can also rerun a range of commands with the
--since flag, and even specify alternative starting points for rerunning them with the --onto
flag. Every command from commits reachable from the specified checksum until --since (but
not including --since) will be re-executed. For example, datalad rerun --since=HEAD~5 will
re-execute any commands in the last five commits. --onto indicates where to start rerunning
the commands from. The default is HEAD, but anything other than HEAD will be checked out
prior to execution, such that re-execution happens in a detached HEAD state, or checked out out
on the new branch specified by the --branch flag. If --since is an empty string, it is set to rerun
every command from the first commit that contains a recorded command. If --onto is an empty
string, re-execution is performed on top to the parent of the first run commit in the revision
list specified with --since. When both arguments are set to empty strings, it therefore means
“rerun all commands with HEAD at the parent of the first commit a command”. In other words,
Rob can “replay” all the history for his artproject in a single command. Using the --branch
option of datalad rerun, he does it on a new branch he names replay:

$ datalad rerun --since= --onto= --branch=replay
[INFO] Making sure inputs are available (this may take some time)
[INFO] == Command start (output follows) =====
[INFO] == Command exit (modification check follows) =====
[INFO] Making sure inputs are available (this may take some time)
[INFO] == Command start (output follows) =====
[INFO] == Command exit (modification check follows) =====
[INFO] Making sure inputs are available (this may take some time)
[INFO] == Command start (output follows) =====
[INFO] == Command exit (modification check follows) =====
add(ok): st-bernard.jpg (file)

(continues on next page)

335 Find out more about working with the history of a dataset with Git in section Miscellaneous file system operations
(page 193)

18.3. Step-by-Step 292

The DataLad Handbook, Release 0.12.0+519.g04985082

(continued from previous page)

save(ok): . (dataset)
add(ok): pimpernel.jpg (file)
save(ok): . (dataset)
add(ok): st-bernard-displaced.jpg (file)
save(ok): . (dataset)
action summary:
add (ok: 3)
get (notneeded: 3)
save (ok: 3)

Now he is on a new branch of his project, which contains “replayed” history.

$ git log --oneline --graph master replay
* 2079cff [DATALAD RUNCMD] blur image
* 9b9ee7b [DATALAD RUNCMD] extract pimpernel
* 92a125b [DATALAD RUNCMD] extract st-bernard lily
| * a6e322c [DATALAD RUNCMD] blur image
| * 14d8e8f [DATALAD RUNCMD] extract pimpernel
| * 999b4f5 [DATALAD RUNCMD] extract st-bernard lily
|/
* bc38bb3 Added flower mosaic from wikimedia
* e79b3ff [DATALAD] new dataset

He can even compare the two branches:

$ datalad diff -t master -f replay
modified: st-bernard-displaced.jpg (file)

He can see that the blurring, which involved a random element, produced different results.
Because his dataset contains two branches, he can compare the two branches using normal
Git operations. The next command, for example, marks which commits are “patch-equivalent”
between the branches. Notice that all commits are marked as equivalent (=) except the ‘random
spread’ ones.

$ git log --oneline --left-right --cherry-mark master...replay
> 2079cff [DATALAD RUNCMD] blur image
= 9b9ee7b [DATALAD RUNCMD] extract pimpernel
= 92a125b [DATALAD RUNCMD] extract st-bernard lily
< a6e322c [DATALAD RUNCMD] blur image
= 14d8e8f [DATALAD RUNCMD] extract pimpernel
= 999b4f5 [DATALAD RUNCMD] extract st-bernard lily

Rob can continue processing images, and will turn in a sucessful art project. Long after he
finishes high school, he finds his dataset on his old computer again and remembers this small
project fondly.

18.3. Step-by-Step 293

CHAPTER

NINETEEN

WRITING A REPRODUCIBLE PAPER

This use case demonstrates how to use nested DataLad datasets to create a fully reproducible
paper by linking

1. (different) DataLad dataset sources with

2. the code needed to compute results and

3. LaTeX files to compile the resulting paper.

The different components each exist in individual DataLad datasets and are aggregated into
a single DataLad superdataset complying to the YODA principles for data analysis projects342.
The resulting superdataset can be publicly shared, data can be obtained effortlessly on demand
by anyone that has the superdataset, and results and paper can be generated and recomputed
everywhere on demand.

19.1 The Challenge

Over the past year, Steve worked on the implementation of an algorithm as a software package.
For testing purposes, he used one of his own data collections, and later also included a publicly
shared data collection. After completion, he continued to work on validation analyses to prove
the functionality and usefulness of his software. Next to a directory in which he developed his
code, and directories with data he tested his code on, he now also has other directories with
different data sources used for validation analyses. “This can not take too long!” Steve thinks
optimistically when he finally sits down to write up a paper.

His scripts run his algorithm on the different data collections, create derivatives of his raw data,
pretty figures, and impressive tables. Just after he hand-copies and checks the last decimal of
the final result in the very last table of his manuscript, he realizes that the script specified the
wrong parameter values, and all of the results need to be recomputed - and obviously updated
in his manuscript. When writing the discussion, he finds a paper that reports an error in the
publicly shared data collection he uses. After many more days of updating tables and fixing
data columns by hand, he finally submits the paper. Trying to stand with his values of open
and reproducible science, he struggles to bundle all scripts, algorithm code, and data he used
in a shareable form, and frankly, with all the extra time this manuscript took him so far, he
lacks motivation and time. In the end, he writes a three page long README file in his GitHub
code repository, includes his email for data requests, and secretly hopes that no-one will want
to recompute his results, because by now even he himself forgot which script ran on which
dataset and what data was fixed in which way, or whether he was careful enough to copy all

342 You can read up on the YODA principles again in section YODA: Best practices for data analyses in a dataset
(page 129)

294

The DataLad Handbook, Release 0.12.0+519.g04985082

of the results correctly. In the review process, reviewer 2 demands that the figures his software
produces need to get a new color scheme, which requires updates in his software package, and
more recomputations.

19.2 The DataLad Approach

Steve sets up a DataLad dataset and calls it algorithm-paper. In this dataset, he creates several
subdirectories to collate everything that is relevant for the manuscript: Data, code, a manuscript
backbone without results. code/ contains a Python script that he uses for validation analyses,
and prior to computing results, the script attempts to download the data should the files need to
be obtained using DataLad’s Python API. data/ contains a separate DataLad subdataset for every
dataset he uses. An algorithm/ directory is a DataLad dataset containing a clone of his software
repository, and within it, in the directory test/data/, are additional DataLad subdatasets that
contain the data he used for testing. Lastly, the DataLad superdataset contains a LaTeX .tex file
with the text of the manuscript. When everything is set up, a single command line call triggers
(optional) data retrieval from GitHub repositories of the datasets, computation of results and
figures, automatic embedding of results and figures into his manuscript upon computation, and
PDF compiling. When he notices the error in his script, his manuscript is recompiled and up-
dated with a single command line call, and when he learns about the data error, he updates the
respective DataLad dataset to the fixed state while preserving the history of the data repository.

He makes his superdataset a public repository on GitHub, and anyone who clones it can obtain
the data automatically and recompute and recompile the full manuscript with all results. Steve
never had more confidence in his research results and proudly submits his manuscript. During
review, the color scheme update in his algorithm sourcecode is integrated with a simple update
of the algorithm/ subdataset, and upon command-line invocation his manuscript updates itself
with the new figures.

Note: The actual manuscript this use case is based on can be found here336: https://github.
com/psychoinformatics-de/paper-remodnav/. datalad clone the repository and follow the few
instructions in the README to experience the DataLad approach described above.

19.3 Step-by-Step

datalad create a DataLad dataset. In this example, it is named “algorithm-paper”, and datalad
create uses the yoda procedure342 to apply useful configurations for a data analysis project:

$ datalad create -c yoda algorithm-paper

[INFO] Creating a new annex repo at /home/adina/repos/testing/algorithm-paper
create(ok): /home/adina/repos/testing/algorithm-paper (dataset)

This newly created directory already has a code/ directory that will be tracked with Git and
some README.md and CHANGELOG.md files thanks to the yoda procedure applied above. Addition-
ally, create a subdirectory data/ within the dataset. This project thus already has a comprehen-
sible structure:

336 https://github.com/psychoinformatics-de/paper-remodnav/

19.2. The DataLad Approach 295

https://github.com/psychoinformatics-de/paper-remodnav/
https://github.com/psychoinformatics-de/paper-remodnav/
https://github.com/psychoinformatics-de/paper-remodnav/

The DataLad Handbook, Release 0.12.0+519.g04985082

$ cd algorithm-paper
$ mkdir data

You can checkout the directory structure with the tree command

$ tree
algorithm-paper

CHANGELOG.md
code

README.md
data
README.md

All of your analyses scripts should live in the code/ directory, and all input data should live in
the data/ directory.

To populate the DataLad dataset, add all the data collections you want to perform analyses on as
individual DataLad subdatasets within data/. In this example, all data collections are already
DataLad datasets or git repositories and hosted on GitHub. datalad clone therefore installs
them as subdatasets, with -d ../ registering them as subdatasets to the superdataset343.

$ cd data
clone existing git repositories with data (-s specifies the source, in this case,␣
→˓GitHub repositories)
-d points to the root of the superdataset
datalad clone -d ../ https://github.com/psychoinformatics-de/studyforrest-data-phase2.git

[INFO] Cloning https://github.com/psychoinformatics-de/studyforrest-data-phase2.git [1␣
→˓other candidates] into '/home/adina/repos/testing/algorithm-paper/data/raw_eyegaze'
install(ok): /home/adina/repos/testing/algorithm-paper/data/raw_eyegaze (dataset)

$ datalad clone -d ../ git@github.com:psychoinformatics-de/studyforrest-data-
→˓eyemovementlabels.git

[INFO] Cloning git@github.com:psychoinformatics-de/studyforrest-data-eyemovementlabels.
→˓git into '/home/adina/repos/testing/algorithm-paper/data/studyforrest-data-
→˓eyemovementlabels'
Cloning (compressing objects): 45% 1.80k/4.00k [00:01<00:01, 1.29k objects/s
[...]

Any script we need for the analysis should live inside code/. During script writing, save any
changes to you want to record in your history with datalad save.

The eventual outcome of this work is a GitHub repository that anyone can use to get the data
and recompute all results when running the script after cloning and setting up the necessary
software. This requires minor preparation:

• The final analysis should be able to run on anyone’s filesystem. It is therefore important
to reference datafiles with the scripts in code/ as relative paths instead of hard-coding
absolute paths.

• After cloning the algorithm-paper repository, data files are not yet present locally. To
spare users the work of a manual datalad get, you can have your script take care of data
retrieval via DataLad’s Python API.

These two preparations can be seen in this excerpt from the Python script:
343 You can read up on cloning datasets as subdatasets again in section Install datasets (page 39).

19.3. Step-by-Step 296

The DataLad Handbook, Release 0.12.0+519.g04985082

import DataLad's API
from datalad.api import get

note that the datapath is relative
datapath = op.join('data',

'studyforrest-data-eyemovementlabels',
'sub*',
'*run-2*.tsv')

data = sorted(glob(datapath))

this will get the data if it is not yet retrieved
get(dataset='.', path=data)

Lastly, datalad clone the software repository as a subdataset in the root of the superdataset344.

in the root of ``algorithm-paper`` run
$ datalad clone -d . git@github.com:psychoinformatics-de/remodnav.git

This repository has also subdatasets in which the datasets used for testing live (tests/data/):

$ tree
[...]

| remodnav
clf.py
__init__.py
__main__.py
tests

data
anderson_etal
studyforrest

At this stage, a public algorithm-paper repository shares code and data, and changes to any
dataset can easily be handled by updating the respective subdataset. This already is a big leap
towards open and reproducible science. Thanks to DataLad, code, data, and the history of all
code and data are easily shared - with exact versions of all components and bound together in
a single, fully tracked research object. By making use of the Python API of DataLad and relative
paths in scripts, data retrieval is automated, and scripts can run on any other computer.

19.4 Automation with existing tools

To go beyond that and include freshly computed results in a manuscript on the fly does not
require DataLad anymore, only some understanding of Python, LaTeX, and Makefiles. As with
most things, its a surprisingly simple challenge if one has just seen how to do it once. This last
section will therefore outline how to compile the results into a PDF manuscript and automate
this process. In principle, the challenge boils down to:

1. have the script output results (only requires print() statements)

2. capture these results automatically (done with a single line of Unix commands)

3. embed the captured results in the PDF (done with one line in the .tex file and some clever
referencing)

344 Note that the software repository may just as well be cloned into data/.

19.4. Automation with existing tools 297

The DataLad Handbook, Release 0.12.0+519.g04985082

4. automate as much as possible to keep it as simple as possible (done with a Makefile)

That does not sound too bad, does it? Let’s start by revealing how this magic trick works.
Everything relies on printing the results in the form of user-defined LaTeX definitions (using
the \newcommand command), referencing those definitions in your manuscript where the results
should end up, and bind the \newcommands as \input{} to your .tex file. But lets get there in
small steps.

First, if you want to read up on the \newcommand, please see its documentation337. The command
syntax looks like this:

\newcommand{\name}[num]{definition}

What we want to do, expressed in the most human-readable form, is this:

\newcommand{\Table1Cell1Row1}{0.67}

where 0.67 would be a single result computed by your script. This requires print() statements
that look like this in the most simple form (excerpt from script):

print('\\newcommand{\\maxmclf}{{%.2f}}' % max_mclf)

where max_mclf is a variable that stores the value of one computation.

Tables and references to results within the .tex files then do not contain the specific value 0.67
(this value would change if the data changes, or other parameters), but \maxmclf (and similar,
unique names for other results). For full tables, one can come up with naming schemes that
make it easy to fill tables with unique names with minimal work, for example like this (excerpt):

\begin{table}[tbp]
\caption{Cohen's Kappa reliability between human coders (MN, RA),
and \remodnav\ (AL) with each of the human coders.
}
\label{tab:kappa}
\begin{tabular*}{0.5\textwidth}{c @{\extracolsep{\fill}}llll}
\textbf {Fixations} & & \\
\hline\noalign{\smallskip}
Comparison & Images & Dots \\
\noalign{\smallskip}\hline\noalign{\smallskip}
MN versus RA & \kappaRAMNimgFix & \kappaRAMNdotsFix \\
AL versus RA & \kappaALRAimgFix & \kappaALRAdotsFix \\
AL versus MN & \kappaALMNimgFix & \kappaALMNdotsFix \\
\noalign{\smallskip}
\textbf{Saccades} & & \\
\hline\noalign{\smallskip}
Comparison & Images & Dots \\
\noalign{\smallskip}\hline\noalign{\smallskip}
MN versus RA & \kappaRAMNimgSac & \kappaRAMNdotsSac \\
AL versus RA & \kappaALRAimgSac & \kappaALRAdotsSac \\
AL versus MN & \kappaALMNimgSac & \kappaALMNdotsSac \\
\noalign{\smallskip}
% [..] more content ommitted

\end{tabular*}
\end{table}

Without diving into the context of the paper, this table contains results for three three com-
parisons (“MN versus RA”, “AL versus RA”, “AL versus MN”), for three event types (Fixations,

337 https://en.wikibooks.org/wiki/LaTeX/Macros

19.4. Automation with existing tools 298

https://en.wikibooks.org/wiki/LaTeX/Macros

The DataLad Handbook, Release 0.12.0+519.g04985082

Saccades, and post-saccadic oscillations (PSO)), and three different stimulus types (Images,
Dots, and Videos). The latter event and stimulus are omitted for better readability of the .tex
excerpt. Here is how this table looks like in the manuscript (cropped to match the .tex snippet):

It might appear tedious to write scripts that output results for such tables with individual names.
However, print() statements to fill those tables can utilize Pythons string concatenation meth-
ods and loops to keep the code within a few lines for a full table, such as

iterate over stimulus categories
for stim in ['img', 'dots', 'video']:

iterate over event categories
for ev in ['Fix', 'Sac', 'PSO']:

[...]

create the combinations
for rating, comb in [('RAMN', [RA_res_flat, MN_res_flat]),

('ALRA', [RA_res_flat, AL_res_flat]),
('ALMN', [MN_res_flat, AL_res_flat])]:

kappa = cohen_kappa_score(comb[0], comb[1])
label = 'kappa{}{}{}'.format(rating, stim, ev)
print the result
print('\\newcommand{\\%s}{%s}' % (label, '%.2f' % kappa))

Running the python script will hence print plenty of LaTeX commands to your screen (try it out
in the actual manuscript, if you want!). This was step number 1 of 4.

Find out more

How about figures?
To include figures, the figures just need to be saved into a dedicated location (for example
a directory img/) and included into the .tex file with standard LaTeX syntax. Larger
figures with subfigures can be created by combining several figures:

19.4. Automation with existing tools 299

The DataLad Handbook, Release 0.12.0+519.g04985082

\begin{figure*}[tbp]
\includegraphics[trim=0 8mm 3mm 0,clip,width=.5\textwidth]{img/mainseq_lab}
\includegraphics[trim=8mm 8mm 0 0,clip,width=.5\textwidth-3.3mm]{img/mainseq_sub_

→˓lab} \\
\includegraphics[trim=0 0 3mm 0,clip,width=.5\textwidth]{img/mainseq_mri}
\includegraphics[trim=8mm 0 0 0,clip,width=.5\textwidth-3.3mm]{img/mainseq_sub_

→˓mri}

\caption{Main sequence of eye movement events during one 15 minute sequence of
the movie (segment 2) for lab (top), and MRI participants (bottom). Data
across all participants per dataset is shown on the left, and data for a single
exemplary participant on the right.}

\label{fig:overallComp}
\end{figure*}

This figure looks like this in the manuscript:

For step 2 and 3, the print statements need to be captured and bound to the .tex file. The
tee338 command can write all of the output to a file (called results_def.tex):

code/mk_figuresnstats.py -s | tee results_def.tex

This will redirect every print statement the script wrote to the terminal into a file called
results_def.tex. This file will hence be full of \newcommand definitions that contain the re-
sults of the computations.

For step 3, one can include this file as an input source into the .tex file with

\begin{document}
\input{results_def.tex}

Upon compilation of the .tex file into a PDF, the results of the computations captured with
\newcommand definitions are inserted into the respective part of the manuscript.

The last step is to automate this procedure. So far, the script would need to be executed with
a command line call, and the PDF compilation would require another commandline call. One

338 https://en.wikipedia.org/wiki/Tee_(command)

19.4. Automation with existing tools 300

https://en.wikipedia.org/wiki/Tee_(command)

The DataLad Handbook, Release 0.12.0+519.g04985082

way to automate this process are Makefiles339. make is a decades-old tool known to many and
bears the important advantage that is will deliver results regardless of what actually needs to be
done with a single make call – whether it is executing a Python script, running bash commands,
or rendering figures, or all of this. Here is the one used for the manuscript:

1 all: main.pdf
2

3 main.pdf: main.tex tools.bib EyeGaze.bib results_def.tex figures
4 latexmk -pdf -g $<
5

6 results_def.tex: code/mk_figuresnstats.py
7 bash -c 'set -o pipefail; code/mk_figuresnstats.py -s | tee results_def.tex'
8

9 figures: figures-stamp
10

11 figures-stamp: code/mk_figuresnstats.py
12 code/mk_figuresnstats.py -f -r -m
13 $(MAKE) -C img
14 touch $@
15

16 clean:
17 rm -f main.bbl main.aux main.blg main.log main.out main.pdf main.tdo main.fls main.

→˓fdb_latexmk example.eps img/*eps-converted-to.pdf texput.log results_def.tex figures-
→˓stamp

18 $(MAKE) -C img clean

One can read a Makefile as a recipe:

• Line 1: “The overall target should be main.pdf (the final PDF of the manuscript).”

• Line 2-3: “To make the target main.pdf, the following files are required: main.tex (the
manuscript’s .tex file), tools.bib & EyeGaze.bib (bibliography files), results_def.tex
(the results definitions), and figures (a section not covered here, about rendering figures
with inkscape prior to including them in the manuscript). If all of these files are present,
the target main.pdf can be made by running the command latexmk -pdf -g”

• Line 5-6: “To make the target results_def.tex, the script code/mk_figuresnstats.py
is required. If the file is present, the target results_def.tex can be made by run-
ning the command bash -c 'set -o pipefail; code/mk_figuresnstats.py -s | tee
results_def.tex'”

This triggers the execution of the script, collection of results in results_def.tex, and PDF com-
pilation upon typing make. The last three lines define that a make clean removes all computed
files, and also all images.

Finally, by wrapping make in a datalad run command, the computation of results and compiling
of the manuscript with all generated output can be written to the history of the superdataset.
datalad run make will thus capture all provenance for the results and the final PDF.

Thus, by using DataLad and its Python API, a few clever Unix and LaTeX tricks, and Makefiles,
anyone can create a reproducible paper. This saves time, increases your own trust in the results,
and helps to make a more convincing case with your research. If you have not yet, but are
curious, checkout the manuscript this use case is based on340. Any questions can be asked by
opening an issue341.

339 https://en.wikipedia.org/wiki/Make_(software)
340 http://github.com/psychoinformatics-de/paper-remodnav/
341 https://github.com/psychoinformatics-de/paper-remodnav/issues/new

19.4. Automation with existing tools 301

https://en.wikipedia.org/wiki/Make_(software)
http://github.com/psychoinformatics-de/paper-remodnav/
https://github.com/psychoinformatics-de/paper-remodnav/issues/new

CHAPTER

TWENTY

STUDENT SUPERVISION IN A RESEARCH PROJECT

This use case will demonstrate a workflow that uses DataLad tools and principles to assist in
technical aspects of supervising research projects with computational components. It demon-
strates how a DataLad dataset comes with advantages that mitigate technical complexities for
trainees and allows high-quality supervision from afar with minimal effort and time commit-
ment from busy supervisors. It furthermore serves to log undertaken steps, establishes trust in
an analysis, and eases collaboration.

Successful workflows rely on more knowledgeable “trainers” (i.e., supervisors, or a more ex-
perienced collaborator) for a quick initial dataset setup with optimal configuration, and an
introduction to the YODA principles and basic DataLad commands. Subsequently, supervision
and collaboration is made easy by the distributed nature of a dataset. Afterwards, reuse of a
students work is made possible by the modular nature of the dataset. Students can concen-
trate on questions relevant for the field and research topic, and computational complexities are
minimized.

20.1 The Challenge

Megan is a graduate student and does an internship in a lab at a partnering research institution.
As she already has experience in data analysis, and the time of her supervisor is limited, she
is given a research question to work on autonomously. The data are already collected, and
everyone involved is certain that Megan will be fine performing the analyses she has experience
with. Her supervisor confidently proposes the research project as a conference talk Megan
should give at the end of her stay. Megan is excited about the responsibility and her project,
and can not wait to start.

On the first day, her supervisor spends an hour to show her the office, the coffee machine, and
they chat about the high-level aspects of the projects: Which is the relevant literature, who
collected the data, how long should the final talk be. Megan has many procedural questions,
but the hour is over fast, and it is difficult to find time to meet again. As it turns out, her
supervisor will leave the country for a three month visit to a lab in Japan soon, and is very busy
preparing this stay and coordinating other projects. However, everyone is confident that Megan
will be just fine. The IT office issues an account on the computational cluster for her, and the
postdoc that collected the data points her to the directories in which the data are stored.

When she starts, Megan realizes that she has no experience with the Linux-based operating
system running on the compute cluster. She knows very well how to write scripts to perform
very complex analyses, but needs to invest much time to understand basic concepts and relevant
commands on the cluster because no-one is around to give her a quick introduction. When she
starts her computations, she accidentally overwrites a data file in the data collection, and emails

302

The DataLad Handbook, Release 0.12.0+519.g04985082

the postdoc for help. He luckily has a backup of the data and is able to restore the original state,
but grimly CCs her supervisor in his response email to her. Not being told where to store analysis
results in, Megan saves the results in a not backed-up scratch directory. With ambiguous, hard-
to-make-sense-of emails her supervisor sends at 3am, Megan tries to comply to the instructions
she extracts from the emails, and reports back lengthy explanations of what she is doing that her
supervisor rarely has time to read. Without an interactive discussion or feedback component,
Megan is very unsure about what she is supposed to do, and saves multiple different analysis
scripts and results of them inside of the scratch folder.

When her supervisor returns and meets for a project update, he scolds her for the bad organiza-
tion, and the no-backup storage choice. With a pressing timeline, Megan is told to write down
her results. She is discouraged when she finally gets feedback on them and learns that she
interpreted one instruction of her supervisor differently from what was meant by it, deeming
all of her results irrelevant. Not trusting Megan’s analyses anymore, her supervisor cancels the
talk and has the postdoc take over. Megan feels incompetent and regards the stay as a waste
of time, her supervisor is unhappy about the mis-communication and lack of results, and the
postdoc taking over is unable to comprehend what was done so far and needs to start over new,
even though all analysis scripts were correct and very relevant for the future of the project.

20.2 The DataLad Approach

When Megan arrives in the lab, her supervisor and the postdoc that collected the data take
an hour to meet and talk about the upcoming project. To ease the technical complexities for
a new student like Megan on an unfamiliar computational infrastructure, they talk about the
YODA principles, basic DataLad commands, and set up a project dataset for Megan to work in.
Inside of this dataset, the original data are cloned as a subdataset, code is tracked with Git, and
the appropriate software is provided with a containerized image tracked in the dataset. Megan
can adopt the version control workflow and data analysis principles very fast and is thankful
for the brief but sufficient introduction. When her supervisor leaves for Japan, they stay in
touch via email, but her supervisor also checks the development of the project and occasionally
skims through Megan’s code updates from afar every other week. When he notices that one of
his instructions was ambiguous and Megan’s approach to it misguided, he can intervene right
away. Megan feels comfortable and confident that she is doing something useful and learns a
lot about data management in the safe space of a version controlled dataset. Her supervisor can
see how well made Megan’s analysis methods are, and has trust in her results. Megan proudly
presents the results of her analysis and leaves with many good experiences and lots of new
knowledge. Her supervisor is happy about the progress done on the project, and the dataset is
a standalone “lab-notebook” that anyone can later use as a detailed log to make sense of what
was done. As an ongoing collaboration, Megan, the postdoc, and her supervisor write up a
paper on the analysis and use the analysis dataset as a subdataset in this project.

20.3 Step-by-Step

Megan’s supervisor is excited that she comes to visit the lab and trusts her to be a diligent,
organized, and capable researcher. But he also does not have much time for a lengthy introduc-
tion to technical aspects unrelated to the project, interactive teaching, or in-person supervision.
Megan in turn is a competent student and eager to learn new things, but she does not have
experience with DataLad, version control, or the computational cluster.

20.2. The DataLad Approach 303

The DataLad Handbook, Release 0.12.0+519.g04985082

As a first step, therefore, her supervisor and the postdoc prepare a preconfigured dataset in a
dedicated directory everyone involved in the project has access to:

$ datalad create -c yoda project-megan

All data that this lab generates or uses is a standalone DataLad dataset that lives in a dedicated
data\ directory on a server. To give Megan access to the data without endangering or potentially
modifying the pristine data kept in there, complying to the YODA principles, they clone the data
she is supposed to analyze as a subdataset:

$ cd project-megan
$ datalad clone -d . \
/home/data/ABC-project \
data/ABC-project

[INFO] Cloning /home/data/ABC-project [1 other candidates] into '/home/projects/
→˓project-megan/data/ABC-project'
[INFO] Remote origin not usable by git-annex; setting annex-ignore
install(ok): data/ABC-project (dataset)
action summary:
add (ok: 2)
install (ok: 1)
save (ok: 1)

The YODA principle and the data installation created a comprehensive directory structure and
configured the code\ directory to be tracked in Git, to allow for easy, version-controlled modifi-
cations without the necessity to learn about locked content in the annex.

$ tree
.

CHANGELOG.md
code

README.md
data

ABC-project [13 entries exceeds filelimit, not opening dir]
README.md

Within a 20-minute walk-through, Megan learns the general concepts of version- control, gets
an overview of the YODA principles346, configures her Git identity with the help of her super-
visor, and is given an introduction to the most important DataLad commands relevant to her,
datalad save347, datalad containers-run348, and datalad rerun349. For reference, they also
give her the cheat sheet and the link to the DataLad handbook as a resource if she has further
questions.

Todo: link cheat sheet once it exists

To make the analysis reproducible, they spent the final part of the meeting on adding the labs
default singularity image to the dataset. The lab has a singularity image with all the relevant
software on Singularity-Hub345, and it can easily be added to the dataset with the DataLad-

346 Find out more about the YODA principles in section YODA: Best practices for data analyses in a dataset (page 129)
347 Find out more about datalad save in section Modify content (page 36)
348 Find out more about the datalad containers extension in section TODO:link once it exists
349 Find out more about the datalad rerun command in section DataLad, Re-Run! (page 56)
345 https://singularity-hub.org/

20.3. Step-by-Step 304

TODO:link
https://singularity-hub.org/

The DataLad Handbook, Release 0.12.0+519.g04985082

containers extension348:

$ datalad containers-add somelabsoftware --url shub://somelab/somelab-
→˓container:Softwaresetup

With the container image registered in the dataset, Megan can perform her analysis in the
correct software environment, does not need to setup software herself, and creates a more
reproducible analysis.

With only a single command to run, Megan finds it easy to version control her scripts and gets
into the habit of running datalad save frequently. This way, she can fully concentrate on writing
up the analysis. In the beginning, her commit messages may not be optimal, and the changes
she commits into a single commit might have better been split up into separate commits. But
from the very beginning she is able to version control her progress, and she gets more and more
proficient as the project develops.

Knowing the YODA principles gives her clear and easy-to-follow guidelines on how to work.
Her scripts are producing results in dedicated output/ directories and are executed with datalad
containers-run to capture the provenance of how which result came to be with which software.
These guidelines are not complex, and yet make her whole workflow much more comprehensi-
ble, organized, and transparent.

The preconfigured DataLad dataset thus minimized the visible technical complexity. Just a few
commands and standards have a large positive impact on her project and Megan learns these
new skills fast. It did not take her supervisor much time to configure the dataset or give her an
introduction to the relevant commands, and yet it ensured her to be able to productively work
and contribute her expertise to the project.

Her supervisor can also check how the project develops if Megan asks for assistance or if he is
curious – even from afar and whenever he has some 15 minutes of spare-time. When he notices
that Megan must have misunderstood one of his emails, he can intervene and contact Megan by
their preferred method of communication, and/or push a fix or comment to the project, as he
has write-access. This enables him to stay up-to-date independent of emails or meetings with
Megan, and to help when necessary without much trouble. When they talk, they focus on the
code and analysis at hand, and not solely on verbal reports.

Megan finishes her analysis well ahead of time and can prepare her talk. Together with her
supervisor she decides which figures look good and which results are important. All results that
are deemed irrelevant can be dropped to keep the dataset lean, but could be recomputed as
their provenance was tracked. Finally, the data analysis project is cloned as an input into a new
dataset created for collaborative paper-writing on the analysis:

$ datalad create megans-paper
$ cd megans-paper
$ datalad clone -d . \
/home/projects/project-megan \
analysis

[INFO] Cloning /home/projects/project-megan [1 other candidates] into '/home/paper/
→˓megans-paper'
[INFO] Remote origin not usable by git-annex; setting annex-ignore
install(ok): analysis (dataset)
action summary:
add (ok: 2)
install (ok: 1)
save (ok: 1)

20.3. Step-by-Step 305

The DataLad Handbook, Release 0.12.0+519.g04985082

Even as Megan returns to her home institution, they can write up the paper on her analysis col-
laboratively, and her co-authors have a detailed research log of the project within the dataset’s
history.

In summary, DataLad can help to effectively manage student supervision in computational
projects. It requires minimal effort, but comes with great benefit:

• Appropriate data management is made a key element of the project and handled from the
start, not an afterthought that needs to be addressed at the end of its lifetime.

• The dataset becomes the lab notebook, hence a valid and detailed log is always available
and accessible to supervisor and trainee.

• supervisors can efficiently prepare for meetings in a way that does not rely exclusively on
a students report. This shifts the focus from trust in a student to trust in a student’s work.

• supervisors can provide feedback, not only high-level based on a presentation, but much
more detailed, and also on process aspects if desired/necessary: Supervisors can directly
contribute in a way that is as auditable/accountable as the student’s own contributions
– for both parties the strict separation and tracking of any external inputs of a project
make it possible (when a project is completed) that a supervisor can efficiently test the
integrity of the inputs, discard them (if unmodified), and only archive the outputs that
are unique to the project – which then can become a modular component for re-use in a
future project.

20.3. Step-by-Step 306

CHAPTER

TWENTYONE

AN AUTOMATICALLY AND COMPUTATIONALLY REPRODUCIBLE
NEUROIMAGING ANALYSIS FROM SCRATCH

This use case sketches the basics of a portable analysis that can be automatically computa-
tionally reproduced, starting from the acquisition of a neuroimaging dataset with a magnetic
resonance imaging (MRI) scanner up to complete data analysis results:

1. Two extension packages, datalad-container350 and datalad-neuroimaging351 extend Data-
Lad’s functionality with the ability to work with computational containers and neuroimag-
ing data workflows.

2. The analysis is conducted in a way that leaves comprehensive provenance (including soft-
ware environments) all the way from the raw data, and structures study components in a
way that facilitates reuse.

3. It starts with preparing a raw data (dicom) dataset, and subsequently uses the prepared
data for a general linear model (GLM) based analysis.

4. After completion, data and results are archived, and disk usage of the dataset is maximally
reduced.

This use case is adapted from the ReproIn/DataLad tutorial352 by Michael Hanke and Yaroslav
Halchenko, given at the 2018 OHBM training course ran by ReproNim353.

Note: This use case is multi-layered, assumes familiarity with neuroimaging data struc-
tures and standards, and some understanding of neuroimaging software. It includes many
neuroimaging-specific tools, commands, or concepts that are not covered in the Basics of the
handbook.

For a less complex yet still automatically reproducible analysis of public data (without DataLad
extensions), please see the hidden section below. This hidden use case demonstrates a more
“introductory” automatically reproducible analysis.

Find out more

An automatically reproducible analysis of public neuroimaging data
This hidden use case sketches the basics of an analysis that can be automatically repro-
duced by anyone:

1. Public open data stems from the DataLad superdataset ///.

350 https://github.com/datalad/datalad-container
351 https://github.com/datalad/datalad-neuroimaging
352 http://www.repronim.org/ohbm2018-training/03-01-reproin/
353 https://www.repronim.org/

307

https://github.com/datalad/datalad-container
https://github.com/datalad/datalad-neuroimaging
http://www.repronim.org/ohbm2018-training/03-01-reproin/
https://www.repronim.org/

The DataLad Handbook, Release 0.12.0+519.g04985082

2. Automatic data retrieval can be ensured by using DataLad’s commands in the anal-
ysis scripts, or the --input specification of datalad run,

3. Analyses are executed using datalad run and datalad rerun commands to capture
everything relevant to reproduce the analysis.

4. The final dataset can be kept as lightweight as possible by dropping input that can
be easily re-obtained.

5. A complete reproduction of the computation (including input retrieval), is possible
with a single datalad rerun command.

This use case is a specialization of Writing a reproducible paper (page 294): It is a data
analysis that requires and creates large data files, uses specialized analysis software, and
is fully automated using solely DataLad commands and tools. While exact data types,
analysis methods, and software mentioned in this use case belong to the scientific field
of neuroimaging, the basic workflow is domain-agnostic.
The Challenge
Creating reproducible (scientific) analyses seems to require so much: One needs to share
data, scripts, results, and instructions on how to use data and scripts to obtain the results.
A researcher at any stage of their career can struggle to remember which script needs
to be run in which order, or to create comprehensible instructions for others on where
and how to obtain data and how to run which script at what point in time. This leads
to failed replications, a loss of confidence in results, and major time requirements for
anyone trying to reproduce others or even their own analyses.
The DataLad Approach
Scientific studies should be reproducible, and with the increasing accessibility of data,
there is not much excuse for a lack of reproducibility anymore. DataLad can help with
the technical aspects of reproducible science.
For neuroscientific studies, the DataLad superdataset /// provides unified access to a
large amount of data. Using it to install datasets into an analysis-superdataset makes it
easy to share this data together with the analysis. By ensuring that all relevant data is
downloaded via datalad get via DataLad’s command line tools in the analysis scripts,
or --input specifications in a datalad run, an analysis can retrieve all required inputs
fully automatically during execution. Recording executed commands with datalad run
allows to rerun complete analysis workflows with a single command, even if input data
does not exist locally. Combining these three steps allows to share fully automatically
reproducible analyses as lightweight datasets.
Step-by-Step
It always starts with a dataset:

$ datalad create -c yoda demo
[INFO] Creating a new annex repo at /home/me/usecases/repro/demo
[INFO] Running procedure cfg_yoda
[INFO] == Command start (output follows) =====
[INFO] == Command exit (modification check follows) =====
create(ok): /home/me/usecases/repro/demo (dataset)

For this demo we are using two public brain imaging datasets that were pub-
lished on OpenFMRI.org354, and are available from the DataLad superdataset ///
(datasets.datalad.org). When installing datasets from this superdataset, we can use its
abbreviation ///. The two datasets, ds000001355 and ds000002356, are installed into the
subdirectory inputs/.

308

https://legacy.openfmri.org/
https://legacy.openfmri.org/dataset/ds000001/
https://legacy.openfmri.org/dataset/ds000002/

The DataLad Handbook, Release 0.12.0+519.g04985082

$ cd demo
$ datalad clone -d . ///openfmri/ds000001 inputs/ds000001
[INFO] Cloning dataset to Dataset(/home/me/usecases/repro/demo/inputs/ds000001)
[INFO] Attempting to clone from http://datasets.datalad.org/openfmri/ds000001 to /
→˓home/me/usecases/repro/demo/inputs/ds000001
[INFO] Attempting to clone from http://datasets.datalad.org/openfmri/ds000001/.git␣
→˓to /home/me/usecases/repro/demo/inputs/ds000001
[INFO] Start counting objects
[INFO] Start compressing objects
[INFO] Start receiving objects
[INFO] Start resolving deltas
[INFO] Completed clone attempts for Dataset(/home/me/usecases/repro/demo/inputs/
→˓ds000001)
install(ok): inputs/ds000001 (dataset)
add(ok): inputs/ds000001 (file)
add(ok): .gitmodules (file)
save(ok): . (dataset)
action summary:
add (ok: 2)
install (ok: 1)
save (ok: 1)

$ cd demo
$ datalad clone -d . ///openfmri/ds000002 inputs/ds000002
[INFO] Cloning dataset to Dataset(/home/me/usecases/repro/demo/inputs/ds000002)
[INFO] Attempting to clone from http://datasets.datalad.org/openfmri/ds000002 to /
→˓home/me/usecases/repro/demo/inputs/ds000002
[INFO] Attempting to clone from http://datasets.datalad.org/openfmri/ds000002/.git␣
→˓to /home/me/usecases/repro/demo/inputs/ds000002
[INFO] Start counting objects
[INFO] Start compressing objects
[INFO] Start receiving objects
[INFO] Start resolving deltas
[INFO] Completed clone attempts for Dataset(/home/me/usecases/repro/demo/inputs/
→˓ds000002)
install(ok): inputs/ds000002 (dataset)
add(ok): inputs/ds000002 (file)
add(ok): .gitmodules (file)
save(ok): . (dataset)
action summary:
add (ok: 2)
install (ok: 1)
save (ok: 1)

Both datasets are now registered as subdatasets, and their precise versions (e.g. in the
form of the commit shasum of the lastest commit) are on record:

$ datalad --output-format '{path}: {gitshasum}' subdatasets
/home/me/usecases/repro/demo/inputs/ds000001:␣
→˓f7fe2e38852915e7042ca1755775fcad0ff166e5
/home/me/usecases/repro/demo/inputs/ds000002:␣
→˓6b16eff0c9e8d443ee551784981ddd954f657071

DataLad datasets are fairly lightweight in size, they only contain pointers to data and
history information in their minimal form. Thus, so far very little data were actually
downloaded:

309

The DataLad Handbook, Release 0.12.0+519.g04985082

$ du -sh inputs/
14M inputs/

Both datasets would actually be several gigabytes in size, once the dataset content gets
downloaded:

$ datalad -C inputs/ds000001 status --annex
$ datalad -C inputs/ds000002 status --annex
130 annex'd files (2.3 GB recorded total size)
nothing to save, working tree clean
274 annex'd files (2.7 GB recorded total size)
nothing to save, working tree clean

Both datasets contain brain imaging data, and are compliant with the BIDS standard357.
This makes it really easy to locate particular images and perform analysis across datasets.
Here we will use a small script that performs ‘brain extraction’ using FSL358 as a stand-in
for a full analysis pipeline. The script will be stored inside of the code/ directory that the
yoda-procedure created that at the time of dataset-creation.

$ cat << EOT > code/brain_extraction.sh
enable FSL
. /etc/fsl/5.0/fsl.sh

obtain all inputs
datalad get \$@
perform brain extraction
count=1
for nifti in \$@; do

subdir="sub-\$(printf %03d \$count)"
mkdir -p \$subdir
echo "Processing \$nifti"
bet \$nifti \$subdir/anat -m
count=\$((count + 1))

done
EOT

Note that this script uses the datalad get command which automatically obtains the
required files from their remote source – we will see this in action shortly.
We are saving this script in the dataset. This way, we will know exactly which code
was used for the analysis. Everything inside of code/ is tracked with Git thanks to the
yoda-procedure, so we can see more easily how it was edited over time. In addition, we
will “tag” this state of the dataset with the tag setup_done to mark the repository state
at which the analysis script was completed. This is optional, but it can help to identify
important milestones more easily.

$ datalad save --version-tag setup_done -m "Brain extraction script" code/brain_
→˓extraction.sh
add(ok): code/brain_extraction.sh (file)
save(ok): . (dataset)
action summary:
add (ok: 1)
save (ok: 1)

Now we can run our analysis code to produce results. However, instead of running it
directly, we will run it with DataLad – this will automatically create a record of exactly
how this script was executed.

310

https://bids.neuroimaging.io/
https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FSL

The DataLad Handbook, Release 0.12.0+519.g04985082

For this demo we will just run it on the structural images (T1w) of the first subject (sub-
01) from each dataset. The uniform structure of the datasets makes this very easy. Of
course we could run it on all subjects; we are simply saving some time for this demo.
While the command runs, you should notice a few things:

1) We run this command with ‘bash -e’ to stop at any failure that may occur
2) You’ll see the required data files being obtained as they are needed – and only those

that are actually required will be downloaded (because of the appropriate --input
specification of the datalad run – but as a datalad get is also included in the bash
script, forgetting an --input specification would not be problem).

$ datalad run -m "run brain extract workflow" \
--input "inputs/ds*/sub-01/anat/sub-01_T1w.nii.gz" \
--output "sub-*/anat" \
bash -e code/brain_extraction.sh inputs/ds*/sub-01/anat/sub-01_T1w.nii.gz

[INFO] Making sure inputs are available (this may take some time)
[INFO] == Command start (output follows) =====
action summary:
get (notneeded: 4)

Processing inputs/ds000001/sub-01/anat/sub-01_T1w.nii.gz
Processing inputs/ds000002/sub-01/anat/sub-01_T1w.nii.gz
[INFO] == Command exit (modification check follows) =====
get(ok): inputs/ds000001/sub-01/anat/sub-01_T1w.nii.gz (file) [from web...]
get(ok): inputs/ds000002/sub-01/anat/sub-01_T1w.nii.gz (file) [from web...]
add(ok): sub-001/anat.nii.gz (file)
add(ok): sub-001/anat_mask.nii.gz (file)
add(ok): sub-002/anat.nii.gz (file)
add(ok): sub-002/anat_mask.nii.gz (file)
save(ok): . (dataset)
action summary:
add (ok: 4)
get (notneeded: 2, ok: 2)
save (notneeded: 2, ok: 1)

The analysis step is done, all generated results were saved in the dataset. All changes,
including the command that caused them are on record:

311

The DataLad Handbook, Release 0.12.0+519.g04985082

$ git show --stat
commit 74ca02b212be16f3274f238950f86ee995762919
Author: Elena Piscopia <elena@example.net>
Date: Mon May 18 07:47:07 2020 +0200

[DATALAD RUNCMD] run brain extract workflow

=== Do not change lines below ===
{
"chain": [],
"cmd": "bash -e code/brain_extraction.sh inputs/ds000001/sub-01/anat/sub-01_

→˓T1w.nii.gz inputs/ds000002/sub-01/anat/sub-01_T1w.nii.gz",
"dsid": "f54b5290-98ca-11ea-b8a1-1371662818ca",
"exit": 0,
"extra_inputs": [],
"inputs": [
"inputs/ds*/sub-01/anat/sub-01_T1w.nii.gz"
],
"outputs": [
"sub-*/anat"
],
"pwd": "."
}
^^^ Do not change lines above ^^^

sub-001/anat.nii.gz | 1 +
sub-001/anat_mask.nii.gz | 1 +
sub-002/anat.nii.gz | 1 +
sub-002/anat_mask.nii.gz | 1 +
4 files changed, 4 insertions(+)

DataLad has enough information stored to be able to re-run a command.
On command exit, it will inspect the results and save them again, but only if they are
different. In our case, the re-run yields bit-identical results, hence nothing new is saved.

$ datalad rerun
[INFO] Making sure inputs are available (this may take some time)
[INFO] == Command start (output follows) =====
action summary:
get (notneeded: 4)

Processing inputs/ds000001/sub-01/anat/sub-01_T1w.nii.gz
Processing inputs/ds000002/sub-01/anat/sub-01_T1w.nii.gz
[INFO] == Command exit (modification check follows) =====
unlock(ok): sub-001/anat.nii.gz (file)
unlock(ok): sub-001/anat_mask.nii.gz (file)
unlock(ok): sub-002/anat.nii.gz (file)
unlock(ok): sub-002/anat_mask.nii.gz (file)
add(ok): sub-001/anat.nii.gz (file)
add(ok): sub-001/anat_mask.nii.gz (file)
add(ok): sub-002/anat.nii.gz (file)
add(ok): sub-002/anat_mask.nii.gz (file)
action summary:
add (ok: 4)
get (notneeded: 4)
save (notneeded: 3)
unlock (notneeded: 4, ok: 4)

312

The DataLad Handbook, Release 0.12.0+519.g04985082

Now that we are done, and have checked that we can reproduce the results ourselves,
we can clean up. DataLad can easily verify if any part of our input dataset was modified
since we configured our analysis, using datalad diff and the tag we provided:

$ datalad diff setup_done inputs

Nothing was changed.
With DataLad with don’t have to keep those inputs around – without losing the ability to
reproduce an analysis. Let’s uninstall them, and check the size on disk before and after.

$ du -sh
26M .

$ datalad uninstall inputs/*
drop(ok): inputs/ds000001/sub-01/anat/sub-01_T1w.nii.gz (file) [checking http://
→˓openneuro.s3.amazonaws.com/ds000001/ds000001_R1.1.0/uncompressed/sub001/anatomy/
→˓highres001.nii.gz?versionId=8TJ17W9WInNkQPdiQ9vS7wo8ZJ9llF80...]
drop(ok): inputs/ds000001 (directory)
uninstall(ok): inputs/ds000001 (dataset)
drop(ok): inputs/ds000002/sub-01/anat/sub-01_T1w.nii.gz (file) [checking http://
→˓openneuro.s3.amazonaws.com/ds000002/ds000002_R2.0.0/uncompressed/sub-01/anat/sub-
→˓01_T1w.nii.gz?versionId=vXK2.bQ360phhPqbVV_n6RMYqaWAy4Dg...]
drop(ok): inputs/ds000002 (directory)
uninstall(ok): inputs/ds000002 (dataset)
action summary:
drop (ok: 4)
uninstall (ok: 2)

$ du -sh
3.1M .

The dataset is substantially smaller as all inputs are gone. . .

$ ls inputs/*
inputs/ds000001:

inputs/ds000002:

But as these inputs were registered in the dataset when we installed them, getting them
back is very easy. Only the remaining data (our code and the results) need to be kept and
require a backup for long term archival. Everything else can be re-obtained as needed,
when needed.
As DataLad knows everything needed about the inputs, including where to get the right
version, we can re-run the analysis with a single command. Watch how DataLad re-
obtains all required data, re-runs the code, and checks that none of the results changed
and need saving.

313

The DataLad Handbook, Release 0.12.0+519.g04985082

$ datalad rerun
[INFO] Making sure inputs are available (this may take some time)
[INFO] Cloning dataset to Dataset(/home/me/usecases/repro/demo/inputs/ds000001)
[INFO] Attempting to clone from http://datasets.datalad.org/openfmri/ds000001/.git␣
→˓to /home/me/usecases/repro/demo/inputs/ds000001
[INFO] Start counting objects
[INFO] Start compressing objects
[INFO] Start receiving objects
[INFO] Start resolving deltas
[INFO] Completed clone attempts for Dataset(/home/me/usecases/repro/demo/inputs/
→˓ds000001)
[INFO] Cloning dataset to Dataset(/home/me/usecases/repro/demo/inputs/ds000002)
[INFO] Attempting to clone from http://datasets.datalad.org/openfmri/ds000002/.git␣
→˓to /home/me/usecases/repro/demo/inputs/ds000002
[INFO] Start counting objects
[INFO] Start compressing objects
[INFO] Start receiving objects
[INFO] Start resolving deltas
[INFO] Completed clone attempts for Dataset(/home/me/usecases/repro/demo/inputs/
→˓ds000002)
[INFO] == Command start (output follows) =====
action summary:
get (notneeded: 4)

Processing inputs/ds000001/sub-01/anat/sub-01_T1w.nii.gz
Processing inputs/ds000002/sub-01/anat/sub-01_T1w.nii.gz
[INFO] == Command exit (modification check follows) =====
install(ok): inputs/ds000001 (dataset) [Installed subdataset in order to get /home/
→˓me/usecases/repro/demo/inputs/ds000001]
install(ok): inputs/ds000002 (dataset) [Installed subdataset in order to get /home/
→˓me/usecases/repro/demo/inputs/ds000002]
get(ok): inputs/ds000001/sub-01/anat/sub-01_T1w.nii.gz (file) [from web...]
get(ok): inputs/ds000002/sub-01/anat/sub-01_T1w.nii.gz (file) [from web...]
unlock(ok): sub-001/anat.nii.gz (file)
unlock(ok): sub-001/anat_mask.nii.gz (file)
unlock(ok): sub-002/anat.nii.gz (file)
unlock(ok): sub-002/anat_mask.nii.gz (file)
add(ok): sub-001/anat.nii.gz (file)
add(ok): sub-001/anat_mask.nii.gz (file)
add(ok): sub-002/anat.nii.gz (file)
add(ok): sub-002/anat_mask.nii.gz (file)
action summary:
add (ok: 4)
get (notneeded: 2, ok: 2)
install (ok: 2)
save (notneeded: 3)
unlock (notneeded: 4, ok: 4)

Reproduced!
This dataset could now be published and shared as a lightweight yet fully reproducible
resource and enable anyone to replicate the exact same analysis – with a single command.
Public data and reproducible execution for the win!
Note though that reproducibility can and should go further: With more complex software
dependencies, it is inevitable to keep track of the software environment involved in the
analysis as well. If you are curious on how to do this, read on into the main usecase
below.

314

The DataLad Handbook, Release 0.12.0+519.g04985082

354 https://legacy.openfmri.org/
355 https://legacy.openfmri.org/dataset/ds000001/
356 https://legacy.openfmri.org/dataset/ds000002/
357 https://bids.neuroimaging.io/
358 https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FSL

21.1 The Challenge

Allan is an exemplary neuroscientist and researcher. He has spent countless hours diligently
learning not only the statistical methods for his research questions and the software tools for
his computations, but also taught himself about version control and data standards in neu-
roimaging, such as the brain imaging data structure (BIDS359). For his final PhD project, he
patiently acquires functional MRI data of many participants, and prepares it according to the
BIDS standard afterwards. It takes him a full week of time and two failed attempts, but he
eventually has a BIDS-compliant360 dataset.

When he writes his analysis scripts he takes extra care to responsibly version control every
change. He happily notices how much cleaner his directories are, and how he and others can
transparently see how his code evolved. Once everything is set up, he runs his analysis using
large and complex neuroscientific software packages that he installed on his computer a few
years back. Finally, he writes a paper and publishes his findings in a prestigious peer-reviewed
journal. His data and code can be accessed by others easily, as he makes them publicly available.
Colleagues and supervisors admire him for his wonderful contribution to open science.

However, a few months after publication, Allan starts to get emails by that report that his scripts
do not produce the same results as the ones reported in the publication. Startled and confused
he investigates what may be the issue. After many sleepless nights he realizes: The software he
used was fairly old! More recent versions of the same software compute results slightly different,
changed function’s names, or fixed discovered bugs in the underlying source code. Shocked,
he realizes that his scripts are even incompatible with the most recent release of the software
package he used and throw an error. Luckily, he can quickly fix this by adding information about
the required software versions to the README of his project, and he is grateful for colleagues and
other scientists that provide adjusted versions of his code for more recent software releases. In
the end, his results prove to be robust regardless of software version. But while Allen shared
code and data, not including any information about his software environment prevented his
analysis from becoming computationally reproducible.

21.2 The DataLad Approach

Even if an analysis workflow is fully captured and version-controlled, and data and code are
being linked, an analysis may not reproduce. Comprehensive computational reproducibility re-
quires that also the software involved in an analysis and its precise versions need to be known.
DataLad can help with this. Using the datalad-containers extension, complete software en-
vironments can be captured in computational containers, added to (and thus shared together
with) datasets, and linked with commands and outputs they were used for.

359 https://bids.neuroimaging.io/
360 http://bids-standard.github.io/bids-validator/

21.1. The Challenge 315

https://bids.neuroimaging.io/
http://bids-standard.github.io/bids-validator/

The DataLad Handbook, Release 0.12.0+519.g04985082

21.3 Step-by-Step

The first part of this Step-by-Step guide details how to computationally reproducibly and au-
tomatically reproducibly perform data preparation from raw DICOM361 files to BIDS-compliant
NifTi362 images. The actual analysis, a first-level GLM for a localization task, is performed in
the second part. A final paragraph shows how to prepare the dataset for the afterlife.

For this use case, two DataLad extensions are required:

• datalad-container363 and

• datalad-neuroimaging364

You can install them via pip like this:

$ pip install datalad-neuroimaging, datalad-container

Data Preparation

We start by creating a home for the raw data:

$ datalad create localizer_scans
$ cd localizer_scans
[INFO] Creating a new annex repo at /home/me/usecases/repro2/localizer_scans
create(ok): /home/me/usecases/repro2/localizer_scans (dataset)

For this example, we use a number of publicly available DICOM files. Luckily, at the time
of data acquisition, these DICOMs were already equipped with the relevant metadata: Their
headers contain all necessary information to identify the purpose of individual scans and encode
essential properties to create a BIDS compliant dataset from them. The DICOMs are stored on
Github (as a Git repository370), so they can be installed as a subdataset. As they are the raw
inputs of the analysis, we store them in a directory we call inputs/raw.

$ datalad clone --dataset . \
https://github.com/datalad/example-dicom-functional.git \
inputs/rawdata
[INFO] Cloning dataset to Dataset(/home/me/usecases/repro2/localizer_scans/inputs/rawdata)
[INFO] Attempting to clone from https://github.com/datalad/example-dicom-functional.git␣
→˓to /home/me/usecases/repro2/localizer_scans/inputs/rawdata
[INFO] Start enumerating objects
[INFO] Start receiving objects
[INFO] Start resolving deltas
[INFO] Completed clone attempts for Dataset(/home/me/usecases/repro2/localizer_scans/
→˓inputs/rawdata)
install(ok): inputs/rawdata (dataset)
add(ok): inputs/rawdata (file)

(continues on next page)

361 https://www.dicomstandard.org/
362 https://nifti.nimh.nih.gov/
363 https://github.com/datalad/datalad-container
364 https://github.com/datalad/datalad-neuroimaging
370 “Why can such data exist as a Git repository, shouldn’t large files be always stored outside of Git?” you may

ask. The DICOMs exist in a Git-repository for a number of reasons: First, it makes them easily available for demon-
strations and tutorials without involving DataLad at all. Second, the DICOMs are comparatively small: 21K per file.
Importantly, the repository is not meant to version control those files and future states or derivatives and results
obtained from them – this would bring a Git repositories to its knees.

21.3. Step-by-Step 316

https://www.dicomstandard.org/
https://nifti.nimh.nih.gov/
https://github.com/datalad/datalad-container
https://github.com/datalad/datalad-neuroimaging

The DataLad Handbook, Release 0.12.0+519.g04985082

(continued from previous page)

add(ok): .gitmodules (file)
save(ok): . (dataset)
action summary:
add (ok: 2)
install (ok: 1)
save (ok: 1)

The datalad subdatasets reports the installed dataset to be indeed a subdataset of the super-
dataset localizer_scans:

$ datalad subdatasets
subdataset(ok): inputs/rawdata (dataset)

Given that we have obtained raw data, this data is not yet ready for data analysis. Prior to per-
forming actual computations, the data needs to be transformed into appropriate formats and
standardized to an intuitive layout. For neuroimaging, a useful transformation is a transforma-
tion from DICOMs into the NifTi format, a format specifically designed for scientific analyses of
brain images. An intuitive layout is the BIDS standard. Performing these transformations and
standardizations, however, requires software. For the task at hand, HeudiConv365, a DICOM
converter, is our software of choice. Beyond converting DICOMs, it also provides assistance in
converting a raw data set to the BIDS standard, and it integrates with DataLad to place con-
verted and original data under Git/Git-annex version control, while automatically annotating
files with sensitive information (e.g., non-defaced anatomicals, etc).

To take extra care to know exactly what software is used both to be able to go back to it at
a later stage should we have the need to investigate an issue, and to capture full provenance
of the transformation process, we are using a software container that contains the relevant
software setup. A ready-made singularity366 container is available from singularity-hub367 at
shub://ReproNim/ohbm2018-training:heudiconvn.

Using the datalad containers-add command we can add this container to the localizer_scans
superdataset. We are giving it the name heudiconv.

$ datalad containers-add heudiconv --url shub://ReproNim/ohbm2018-training:heudiconvn
add(ok): .datalad/config (file)
save(ok): . (dataset)
containers_add(ok): /home/me/usecases/repro2/localizer_scans/.datalad/environments/
→˓heudiconv/image (file)
action summary:
add (ok: 1)
containers_add (ok: 1)
save (ok: 1)

The command datalad containers-list can verify that this worked:

$ datalad containers-list
heudiconv -> .datalad/environments/heudiconv/image

Great. The dataset now tracks all of the input data and the computational environment for
the DICOM conversion. Thus far, we have a complete record of all components. Let’s stay

365 https://heudiconv.readthedocs.io/en/latest/
366 http://singularity.lbl.gov/
367 https://singularity-hub.org/

21.3. Step-by-Step 317

https://heudiconv.readthedocs.io/en/latest/
http://singularity.lbl.gov/
https://singularity-hub.org/
shub://ReproNim/ohbm2018-training:heudiconvn

The DataLad Handbook, Release 0.12.0+519.g04985082

transparent, but also automatically reproducible in the actual data conversion by wrapping the
necessary heudiconv command seen below:

$ heudiconv -f reproin -s 02 -c dcm2niix -b -l "" --minmeta -a . \
-o /tmp/heudiconv.sub-02 --files inputs/rawdata/dicoms

within a datalad containers-run command. To save time, we will only transfer one subjects
data (sub-02, hence the subject identifier -s 02 in the command). Note that the output below is
how it indeed should look like – the software we are using in this example produces very wordy
output.

$ datalad containers-run -m "Convert sub-02 DICOMs into BIDS" \
--container-name heudiconv \
heudiconv -f reproin -s 02 -c dcm2niix -b -l "" --minmeta -a . \
-o /tmp/heudiconv.sub-02 --files inputs/rawdata/dicoms

[INFO] Making sure inputs are available (this may take some time)
[INFO] == Command start (output follows) =====
INFO: Running heudiconv version 0.5.2-dev
INFO: Analyzing 5460 dicoms
INFO: Filtering out 0 dicoms based on their filename
WARNING: dcmstack without support of pydicom >= 1.0 is detected. Adding a plug
INFO: Generated sequence info for 1 studies with 1 entries total
INFO: Processing sequence infos to deduce study/session
INFO: Study session for {'locator': 'Hanke/Stadler/0083_transrep2', 'session': None,
→˓'subject': '02'}
INFO: Need to process 1 study sessions
INFO: PROCESSING STARTS: {'outdir': '/tmp/heudiconv.sub-02/', 'session': None, 'subject':
→˓'02'}
INFO: Processing 1 pre-sorted seqinfo entries
INFO: Processing 1 seqinfo entries
INFO: Doing conversion using dcm2niix
INFO: Converting ./sub-02/func/sub-02_task-oneback_run-01_bold (5460 DICOMs) -> ./sub-02/
→˓func . Converter: dcm2niix . Output types: ('nii.gz', 'dicom')
INFO: Generating grammar tables from /usr/lib/python3.5/lib2to3/Grammar.txt
INFO: Generating grammar tables from /usr/lib/python3.5/lib2to3/PatternGrammar.txt
200518-07:48:58,821 nipype.workflow INFO:

[Node] Setting-up "convert" in "/tmp/dcm2niix7qddgg6t/convert".
INFO: [Node] Setting-up "convert" in "/tmp/dcm2niix7qddgg6t/convert".
200518-07:48:59,749 nipype.workflow INFO:

[Node] Running "convert" ("nipype.interfaces.dcm2nii.Dcm2niix"), a CommandLine␣
→˓Interface with command:
dcm2niix -b y -z y -x n -t n -m n -f func -o . -s n -v n /tmp/dcm2niix7qddgg6t/convert
INFO: [Node] Running "convert" ("nipype.interfaces.dcm2nii.Dcm2niix"), a CommandLine␣
→˓Interface with command:
dcm2niix -b y -z y -x n -t n -m n -f func -o . -s n -v n /tmp/dcm2niix7qddgg6t/convert
200518-07:49:01,731 nipype.interface INFO:

stdout 2020-05-18T07:49:01.730960:Chris Rorden's dcm2niiX version v1.0.20180622␣
→˓GCC6.3.0 (64-bit Linux)
INFO: stdout 2020-05-18T07:49:01.730960:Chris Rorden's dcm2niiX version v1.0.20180622␣
→˓GCC6.3.0 (64-bit Linux)
200518-07:49:01,731 nipype.interface INFO:

stdout 2020-05-18T07:49:01.730960:Found 5460 DICOM file(s)
INFO: stdout 2020-05-18T07:49:01.730960:Found 5460 DICOM file(s)
200518-07:49:01,731 nipype.interface INFO:

stdout 2020-05-18T07:49:01.730960:swizzling 3rd and 4th dimensions (XYTZ ->␣
→˓XYZT), assuming interslice distance is 3.300000
INFO: stdout 2020-05-18T07:49:01.730960:swizzling 3rd and 4th dimensions (XYTZ -> XYZT),␣
→˓assuming interslice distance is 3.300000 (continues on next page)

21.3. Step-by-Step 318

The DataLad Handbook, Release 0.12.0+519.g04985082

(continued from previous page)

200518-07:49:01,731 nipype.interface INFO:
stdout 2020-05-18T07:49:01.730960:Warning: Images sorted by instance number ␣

→˓[0020,0013](1..5460), but AcquisitionTime [0008,0032] suggests a different order␣
→˓(160423..160223)
INFO: stdout 2020-05-18T07:49:01.730960:Warning: Images sorted by instance number [0020,
→˓0013](1..5460), but AcquisitionTime [0008,0032] suggests a different order (160423..
→˓160223)
200518-07:49:01,731 nipype.interface INFO:

stdout 2020-05-18T07:49:01.730960:Using RWVSlope:RWVIntercept = 4.00757:0
INFO: stdout 2020-05-18T07:49:01.730960:Using RWVSlope:RWVIntercept = 4.00757:0
200518-07:49:01,731 nipype.interface INFO:

stdout 2020-05-18T07:49:01.730960: Philips Scaling Values RS:RI:SS = 4.00757:0:0.
→˓0132383 (see PMC3998685)
INFO: stdout 2020-05-18T07:49:01.730960: Philips Scaling Values RS:RI:SS = 4.00757:0:0.
→˓0132383 (see PMC3998685)
200518-07:49:01,731 nipype.interface INFO:

stdout 2020-05-18T07:49:01.730960:Convert 5460 DICOM as ./func (80x80x35x156)
INFO: stdout 2020-05-18T07:49:01.730960:Convert 5460 DICOM as ./func (80x80x35x156)
200518-07:49:02,410 nipype.interface INFO:

stdout 2020-05-18T07:49:02.409947:compress: "/usr/bin/pigz" -n -f -6 "./func.nii"
INFO: stdout 2020-05-18T07:49:02.409947:compress: "/usr/bin/pigz" -n -f -6 "./func.nii"
200518-07:49:02,410 nipype.interface INFO:

stdout 2020-05-18T07:49:02.409947:Conversion required 2.598621 seconds (1.967562␣
→˓for core code).
INFO: stdout 2020-05-18T07:49:02.409947:Conversion required 2.598621 seconds (1.967562␣
→˓for core code).
200518-07:49:02,563 nipype.workflow INFO:

[Node] Finished "convert".
INFO: [Node] Finished "convert".
INFO: Populating template files under ./
INFO: PROCESSING DONE: {'outdir': '/tmp/heudiconv.sub-02/', 'session': None, 'subject':
→˓'02'}
[INFO] == Command exit (modification check follows) =====
add(ok): CHANGES (file)
add(ok): README (file)
add(ok): dataset_description.json (file)
add(ok): participants.tsv (file)
add(ok): sourcedata/README (file)
add(ok): sourcedata/sub-02/func/sub-02_task-oneback_run-01_bold.dicom.tgz (file)
add(ok): sub-02/func/sub-02_task-oneback_run-01_bold.json (file)
add(ok): sub-02/func/sub-02_task-oneback_run-01_bold.nii.gz (file)
add(ok): sub-02/func/sub-02_task-oneback_run-01_events.tsv (file)
add(ok): sub-02/sub-02_scans.tsv (file)
add(ok): task-oneback_bold.json (file)
save(ok): . (dataset)
action summary:
add (ok: 11)
get (notneeded: 1)
save (notneeded: 1, ok: 1)

Find out what changed after this command by comparing the most recent commit by DataLad
(i.e., HEAD) to the previous one (i.e., HEAD~1) with datalad diff:

$ datalad diff -f HEAD~1
added: CHANGES (file)

(continues on next page)

21.3. Step-by-Step 319

The DataLad Handbook, Release 0.12.0+519.g04985082

(continued from previous page)

added: README (file)
added: dataset_description.json (file)
added: participants.tsv (file)
added: sourcedata/README (file)
added: sourcedata/sub-02/func/sub-02_task-oneback_run-01_bold.dicom.tgz (file)
added: sub-02/func/sub-02_task-oneback_run-01_bold.json (file)
added: sub-02/func/sub-02_task-oneback_run-01_bold.nii.gz (file)
added: sub-02/func/sub-02_task-oneback_run-01_events.tsv (file)
added: sub-02/sub-02_scans.tsv (file)
added: task-oneback_bold.json (file)

As expected, DICOM files of one subject were converted into NifTi files, and the outputs follow
the BIDS standard’s layout and naming conventions! But what’s even better is that this action
and the relevant software environment was fully recorded.

There is only one thing missing before the functional imaging data can be analyzed: A stim-
ulation protocol, so that we know what stimulation was done at which point during the scan.
Thankfully, the data was collected using an implementation that exported this information di-
rectly in the BIDS events.tsv format. The file came with our DICOM dataset and can be found
at inputs/rawdata/events.tsv. All we need to do is copy it to the right location under the
BIDS-mandated name. To keep track of where this file came from, we will also wrap the copy-
ing into a datalad run command. The {inputs} and {outputs} placeholders can help to avoid
duplication in the command call:

$ datalad run -m "Import stimulation events" \
--input inputs/rawdata/events.tsv \
--output sub-02/func/sub-02_task-oneback_run-01_events.tsv \
cp {inputs} {outputs}

[INFO] Making sure inputs are available (this may take some time)
[INFO] == Command start (output follows) =====
[INFO] == Command exit (modification check follows) =====
unlock(ok): sub-02/func/sub-02_task-oneback_run-01_events.tsv (file)
add(ok): sub-02/func/sub-02_task-oneback_run-01_events.tsv (file)
save(ok): . (dataset)
action summary:
add (ok: 1)
get (notneeded: 3)
save (notneeded: 1, ok: 1)
unlock (ok: 1)

git log shows what information DataLad captured about this command’s execution:

$ git log -n 1
commit 690d26059c51a3f73fbd1a0680e3b7caf483557a
Author: Elena Piscopia <elena@example.net>
Date: Mon May 18 07:49:20 2020 +0200

[DATALAD RUNCMD] Import stimulation events

=== Do not change lines below ===
{
"chain": [],
"cmd": "cp '{inputs}' '{outputs}'",
"dsid": "126b62e8-98cb-11ea-b8a1-1371662818ca",
"exit": 0,

(continues on next page)

21.3. Step-by-Step 320

The DataLad Handbook, Release 0.12.0+519.g04985082

(continued from previous page)

"extra_inputs": [],
"inputs": [
"inputs/rawdata/events.tsv"
],
"outputs": [
"sub-02/func/sub-02_task-oneback_run-01_events.tsv"
],
"pwd": "."

}
^^^ Do not change lines above ^^^

Analysis execution

Since the raw data are reproducibly prepared in BIDS standard we can now go further an
conduct an analysis. For this example, we will implement a very basic first-level GLM analysis
using FSL368 that takes only a few minutes to run. As before, we will capture all provenance:
inputs, computational environments, code, and outputs.

Following the YODA principles371, the analysis is set up in a new dataset, with the input dataset
localizer_scans as a subdataset:

get out of localizer_scans
$ cd ../

$ datalad create glm_analysis
$ cd glm_analysis
[INFO] Creating a new annex repo at /home/me/usecases/repro2/glm_analysis
create(ok): /home/me/usecases/repro2/glm_analysis (dataset)

We install localizer_scans by providing its path as a --source to datalad install:

$ datalad clone -d . \
../localizer_scans \
inputs/rawdata

[INFO] Cloning dataset to Dataset(/home/me/usecases/repro2/glm_analysis/inputs/rawdata)
[INFO] Attempting to clone from ../localizer_scans to /home/me/usecases/repro2/glm_
→˓analysis/inputs/rawdata
[INFO] Completed clone attempts for Dataset(/home/me/usecases/repro2/glm_analysis/inputs/
→˓rawdata)
install(ok): inputs/rawdata (dataset)
add(ok): inputs/rawdata (file)
add(ok): .gitmodules (file)
save(ok): . (dataset)
action summary:
add (ok: 2)
install (ok: 1)
save (ok: 1)

datalad subdatasets reports the number of installed subdatasets again:

368 http://fsl.fmrib.ox.ac.uk/
371 To re-read everything about the YODA principles, checkout out section YODA: Best practices for data analyses in

a dataset (page 129).

21.3. Step-by-Step 321

http://fsl.fmrib.ox.ac.uk/

The DataLad Handbook, Release 0.12.0+519.g04985082

$ datalad subdatasets
subdataset(ok): inputs/rawdata (dataset)

We almost forgot something really useful: Structuring the dataset with the help of DataLad!
Luckily, procedures such as yoda can not only be applied upon creating of a dataset (as in Create
a dataset (page 28)), but also with the run-procedure command (as in Configurations to go
(page 120))

$ datalad run-procedure cfg_yoda
[INFO] Running procedure cfg_yoda
[INFO] == Command start (output follows) =====
[INFO] == Command exit (modification check follows) =====

The analysis obviously needs custom code. For the simple GLM analysis with FSL we use:

1. A small script to convert BIDS-formatted events.tsv files into the EV3 format FSL un-
derstands, available at https://raw.githubusercontent.com/myyoda/ohbm2018-training/
master/section23/scripts/events2ev3.sh

2. An FSL analysis configuration template script, available at https://raw.githubusercontent.
com/myyoda/ohbm2018-training/master/section23/scripts/ffa_design.fsf

These script should be stored and tracked inside the dataset within code/. The datalad
download-url command downloads these scripts and records where they were obtained from:

$ datalad download-url --path code/ \
https://raw.githubusercontent.com/myyoda/ohbm2018-training/master/section23/scripts/

→˓events2ev3.sh \
https://raw.githubusercontent.com/myyoda/ohbm2018-training/master/section23/scripts/ffa_

→˓design.fsf
[INFO] Downloading 'https://raw.githubusercontent.com/myyoda/ohbm2018-training/master/
→˓section23/scripts/events2ev3.sh' into '/home/me/usecases/repro2/glm_analysis/code/'
[INFO] Downloading 'https://raw.githubusercontent.com/myyoda/ohbm2018-training/master/
→˓section23/scripts/ffa_design.fsf' into '/home/me/usecases/repro2/glm_analysis/code/'
download_url(ok): /home/me/usecases/repro2/glm_analysis/code/events2ev3.sh (file)
download_url(ok): /home/me/usecases/repro2/glm_analysis/code/ffa_design.fsf (file)
add(ok): code/events2ev3.sh (file)
add(ok): code/ffa_design.fsf (file)
save(ok): . (dataset)
action summary:
add (ok: 2)
download_url (ok: 2)
save (ok: 1)

The commit message that DataLad created shows the URL where each script has been down-
loaded from:

$ git log -n 1
commit a2f447edfe927f101c6c6324da414c3f4c2eba35
Author: Elena Piscopia <elena@example.net>
Date: Mon May 18 07:49:25 2020 +0200

[DATALAD] Download URLs

URLs:

(continues on next page)

21.3. Step-by-Step 322

https://raw.githubusercontent.com/myyoda/ohbm2018-training/master/section23/scripts/events2ev3.sh
https://raw.githubusercontent.com/myyoda/ohbm2018-training/master/section23/scripts/events2ev3.sh
https://raw.githubusercontent.com/myyoda/ohbm2018-training/master/section23/scripts/ffa_design.fsf
https://raw.githubusercontent.com/myyoda/ohbm2018-training/master/section23/scripts/ffa_design.fsf

The DataLad Handbook, Release 0.12.0+519.g04985082

(continued from previous page)

https://raw.githubusercontent.com/myyoda/ohbm2018-training/master/section23/scripts/
→˓events2ev3.sh

https://raw.githubusercontent.com/myyoda/ohbm2018-training/master/section23/scripts/
→˓ffa_design.fsf

Prior to the actual analysis, we need to run the events2ev3.sh script to transform inputs into
the format that FSL expects. The datalad run makes this maximally reproducible and easy, as
the files given as --inputs and --outputs are automatically managed by DataLad.

$ datalad run -m 'Build FSL EV3 design files' \
--input inputs/rawdata/sub-02/func/sub-02_task-oneback_run-01_events.tsv \
--output 'sub-02/onsets' \
bash code/events2ev3.sh sub-02 {inputs}

[INFO] Making sure inputs are available (this may take some time)
[INFO] == Command start (output follows) =====
sub-02
1
[INFO] == Command exit (modification check follows) =====
get(ok): inputs/rawdata/sub-02/func/sub-02_task-oneback_run-01_events.tsv (file) [from␣
→˓origin...]
add(ok): sub-02/onsets/run-1/body.txt (file)
add(ok): sub-02/onsets/run-1/face.txt (file)
add(ok): sub-02/onsets/run-1/house.txt (file)
add(ok): sub-02/onsets/run-1/object.txt (file)
add(ok): sub-02/onsets/run-1/scene.txt (file)
add(ok): sub-02/onsets/run-1/scramble.txt (file)
save(ok): . (dataset)
action summary:
add (ok: 6)
get (notneeded: 1, ok: 1)
save (notneeded: 1, ok: 1)

The dataset now contains and manages all of the required inputs, and we’re ready for FSL. Since
FSL is not a simple program, we make sure to record the precise software environment for the
analysis with datalad containers-run. First, we get a container with FSL in the version we
require:

$ datalad containers-add fsl --url shub://mih/ohbm2018-training:fsl
add(ok): .datalad/config (file)
save(ok): . (dataset)
containers_add(ok): /home/me/usecases/repro2/glm_analysis/.datalad/environments/fsl/image␣
→˓(file)
action summary:
add (ok: 1)
containers_add (ok: 1)
save (ok: 1)

As the analysis setup is now complete, let’s label this state of the dataset:

$ datalad save --version-tag ready4analysis
save(ok): . (dataset)

All we have left is to configure the desired first-level GLM analysis with FSL. At this point,
the template contains placeholders for the basepath and the subject ID, and they need to be
replaced. The following command uses the arcane, yet powerful sed editor to do this. We will

21.3. Step-by-Step 323

The DataLad Handbook, Release 0.12.0+519.g04985082

again use datalad run to invoke our command so that we store in the history how this template
was generated (so that we may audit, alter, or regenerate this file in the future — fearlessly).

$ datalad run \
-m "FSL FEAT analysis config script" \
--output sub-02/1stlvl_design.fsf \
bash -c 'sed -e "s,##BASEPATH##,{pwd},g" -e "s,##SUB##,sub-02,g" \
code/ffa_design.fsf > {outputs}'
[INFO] == Command start (output follows) =====
[INFO] == Command exit (modification check follows) =====
add(ok): sub-02/1stlvl_design.fsf (file)
save(ok): . (dataset)
action summary:
add (ok: 1)
save (notneeded: 1, ok: 1)

To compute the analysis, a simple feat sub-02/1stlvl_design.fsf command is wrapped into
a datalad containers-run command with appropriate --input and --output specification:

$ datalad containers-run --container-name fsl -m "sub-02 1st-level GLM" \
--input sub-02/1stlvl_design.fsf \
--input sub-02/onsets \
--input inputs/rawdata/sub-02/func/sub-02_task-oneback_run-01_bold.nii.gz \
--output sub-02/1stlvl_glm.feat \
feat {inputs[0]}

[INFO] Making sure inputs are available (this may take some time)
[INFO] == Command start (output follows) =====
To view the FEAT progress and final report, point your web browser at /home/me/usecases/
→˓repro2/glm_analysis/sub-02/1stlvl_glm.feat/report_log.html
[INFO] == Command exit (modification check follows) =====
get(ok): inputs/rawdata/sub-02/func/sub-02_task-oneback_run-01_bold.nii.gz (file) [from␣
→˓origin...]
add(ok): sub-02/1stlvl_glm.feat/.files/fsl.css (file)
add(ok): sub-02/1stlvl_glm.feat/.files/images/3.1r.jpg (file)
add(ok): sub-02/1stlvl_glm.feat/.files/images/3.jpg (file)
add(ok): sub-02/1stlvl_glm.feat/.files/images/flirt-bg.jpg (file)
add(ok): sub-02/1stlvl_glm.feat/.files/images/fsl-bg (file)
add(ok): sub-02/1stlvl_glm.feat/.files/images/fsl-bg.jpg (file)
add(ok): sub-02/1stlvl_glm.feat/.files/images/fsl-logo-big.jpg (file)
add(ok): sub-02/1stlvl_glm.feat/.files/images/fsl-logo.gif (file)
add(ok): sub-02/1stlvl_glm.feat/.files/images/fsl-logo.jpg (file)
add(ok): sub-02/1stlvl_glm.feat/.files/images/fsl-logo.png (file)
add(ok): sub-02/1stlvl_glm.feat/.files/images/fsl-macos-snapshot.tiff (file)
add(ok): sub-02/1stlvl_glm.feat/.files/images/fslstart.jpg (file)
add(ok): sub-02/1stlvl_glm.feat/.files/images/fslstart.png (file)
add(ok): sub-02/1stlvl_glm.feat/.files/images/fugue-bg.jpg (file)
add(ok): sub-02/1stlvl_glm.feat/.files/images/tick.gif (file)
add(ok): sub-02/1stlvl_glm.feat/.files/images/vert2.png (file)
add(ok): sub-02/1stlvl_glm.feat/.ramp.gif (file)
add(ok): sub-02/1stlvl_glm.feat/absbrainthresh.txt (file)
add(ok): sub-02/1stlvl_glm.feat/cluster_mask_zstat1.nii.gz (file)
add(ok): sub-02/1stlvl_glm.feat/cluster_zstat1.html (file)
add(ok): sub-02/1stlvl_glm.feat/cluster_zstat1.txt (file)
add(ok): sub-02/1stlvl_glm.feat/confoundevs.txt (file)
add(ok): sub-02/1stlvl_glm.feat/custom_timing_files/ev1.txt (file)
add(ok): sub-02/1stlvl_glm.feat/custom_timing_files/ev2.txt (file)
add(ok): sub-02/1stlvl_glm.feat/custom_timing_files/ev3.txt (file)

(continues on next page)

21.3. Step-by-Step 324

The DataLad Handbook, Release 0.12.0+519.g04985082

(continued from previous page)

add(ok): sub-02/1stlvl_glm.feat/custom_timing_files/ev4.txt (file)
add(ok): sub-02/1stlvl_glm.feat/custom_timing_files/ev5.txt (file)
add(ok): sub-02/1stlvl_glm.feat/custom_timing_files/ev6.txt (file)
add(ok): sub-02/1stlvl_glm.feat/design.con (file)
add(ok): sub-02/1stlvl_glm.feat/design.frf (file)
add(ok): sub-02/1stlvl_glm.feat/design.fsf (file)
add(ok): sub-02/1stlvl_glm.feat/design.mat (file)
add(ok): sub-02/1stlvl_glm.feat/design.min (file)
add(ok): sub-02/1stlvl_glm.feat/design.png (file)
add(ok): sub-02/1stlvl_glm.feat/design.ppm (file)
add(ok): sub-02/1stlvl_glm.feat/design.trg (file)
add(ok): sub-02/1stlvl_glm.feat/design_cov.png (file)
add(ok): sub-02/1stlvl_glm.feat/design_cov.ppm (file)
add(ok): sub-02/1stlvl_glm.feat/example_func.nii.gz (file)
add(ok): sub-02/1stlvl_glm.feat/filtered_func_data.nii.gz (file)
add(ok): sub-02/1stlvl_glm.feat/lmax_zstat1.txt (file)
add(ok): sub-02/1stlvl_glm.feat/logs/feat0 (file)
add(ok): sub-02/1stlvl_glm.feat/logs/feat0_init.e294223 (file)
add(ok): sub-02/1stlvl_glm.feat/logs/feat0_init.o294223 (file)
add(ok): sub-02/1stlvl_glm.feat/logs/feat1 (file)
add(ok): sub-02/1stlvl_glm.feat/logs/feat1a_init (file)
add(ok): sub-02/1stlvl_glm.feat/logs/feat2_pre (file)
add(ok): sub-02/1stlvl_glm.feat/logs/feat2_pre.e294303 (file)
add(ok): sub-02/1stlvl_glm.feat/logs/feat2_pre.o294303 (file)
add(ok): sub-02/1stlvl_glm.feat/logs/feat3_film.e294757 (file)
add(ok): sub-02/1stlvl_glm.feat/logs/feat3_film.o294757 (file)
add(ok): sub-02/1stlvl_glm.feat/logs/feat3_stats (file)
add(ok): sub-02/1stlvl_glm.feat/logs/feat4_post (file)
add(ok): sub-02/1stlvl_glm.feat/logs/feat4_post.e295374 (file)
add(ok): sub-02/1stlvl_glm.feat/logs/feat4_post.o295374 (file)
add(ok): sub-02/1stlvl_glm.feat/logs/feat5_stop.e296006 (file)
add(ok): sub-02/1stlvl_glm.feat/logs/feat5_stop.o296006 (file)
add(ok): sub-02/1stlvl_glm.feat/logs/feat9 (file)
add(ok): sub-02/1stlvl_glm.feat/mask.nii.gz (file)
add(ok): sub-02/1stlvl_glm.feat/mc/disp.png (file)
add(ok): sub-02/1stlvl_glm.feat/mc/prefiltered_func_data_mcf.mat/MAT_0000 (file)
add(ok): sub-02/1stlvl_glm.feat/mc/prefiltered_func_data_mcf.mat/MAT_0001 (file)
add(ok): sub-02/1stlvl_glm.feat/mc/prefiltered_func_data_mcf.mat/MAT_0002 (file)
add(ok): sub-02/1stlvl_glm.feat/mc/prefiltered_func_data_mcf.mat/MAT_0003 (file)
add(ok): sub-02/1stlvl_glm.feat/mc/prefiltered_func_data_mcf.mat/MAT_0004 (file)
add(ok): sub-02/1stlvl_glm.feat/mc/prefiltered_func_data_mcf.mat/MAT_0005 (file)
add(ok): sub-02/1stlvl_glm.feat/mc/prefiltered_func_data_mcf.mat/MAT_0006 (file)
add(ok): sub-02/1stlvl_glm.feat/mc/prefiltered_func_data_mcf.mat/MAT_0007 (file)
add(ok): sub-02/1stlvl_glm.feat/mc/prefiltered_func_data_mcf.mat/MAT_0008 (file)
add(ok): sub-02/1stlvl_glm.feat/mc/prefiltered_func_data_mcf.mat/MAT_0009 (file)
add(ok): sub-02/1stlvl_glm.feat/mc/prefiltered_func_data_mcf.mat/MAT_0010 (file)
add(ok): sub-02/1stlvl_glm.feat/mc/prefiltered_func_data_mcf.mat/MAT_0011 (file)
add(ok): sub-02/1stlvl_glm.feat/mc/prefiltered_func_data_mcf.mat/MAT_0012 (file)
add(ok): sub-02/1stlvl_glm.feat/mc/prefiltered_func_data_mcf.mat/MAT_0013 (file)
add(ok): sub-02/1stlvl_glm.feat/mc/prefiltered_func_data_mcf.mat/MAT_0014 (file)
add(ok): sub-02/1stlvl_glm.feat/mc/prefiltered_func_data_mcf.mat/MAT_0015 (file)
add(ok): sub-02/1stlvl_glm.feat/mc/prefiltered_func_data_mcf.mat/MAT_0016 (file)
add(ok): sub-02/1stlvl_glm.feat/mc/prefiltered_func_data_mcf.mat/MAT_0017 (file)
add(ok): sub-02/1stlvl_glm.feat/mc/prefiltered_func_data_mcf.mat/MAT_0018 (file)
add(ok): sub-02/1stlvl_glm.feat/mc/prefiltered_func_data_mcf.mat/MAT_0019 (file)
add(ok): sub-02/1stlvl_glm.feat/mc/prefiltered_func_data_mcf.mat/MAT_0020 (file)

(continues on next page)

21.3. Step-by-Step 325

The DataLad Handbook, Release 0.12.0+519.g04985082

(continued from previous page)

add(ok): sub-02/1stlvl_glm.feat/mc/prefiltered_func_data_mcf.mat/MAT_0021 (file)
add(ok): sub-02/1stlvl_glm.feat/mc/prefiltered_func_data_mcf.mat/MAT_0022 (file)
add(ok): sub-02/1stlvl_glm.feat/mc/prefiltered_func_data_mcf.mat/MAT_0023 (file)
add(ok): sub-02/1stlvl_glm.feat/mc/prefiltered_func_data_mcf.mat/MAT_0024 (file)
add(ok): sub-02/1stlvl_glm.feat/mc/prefiltered_func_data_mcf.mat/MAT_0025 (file)
add(ok): sub-02/1stlvl_glm.feat/mc/prefiltered_func_data_mcf.mat/MAT_0026 (file)
add(ok): sub-02/1stlvl_glm.feat/mc/prefiltered_func_data_mcf.mat/MAT_0027 (file)
add(ok): sub-02/1stlvl_glm.feat/mc/prefiltered_func_data_mcf.mat/MAT_0028 (file)
add(ok): sub-02/1stlvl_glm.feat/mc/prefiltered_func_data_mcf.mat/MAT_0029 (file)
add(ok): sub-02/1stlvl_glm.feat/mc/prefiltered_func_data_mcf.mat/MAT_0030 (file)
add(ok): sub-02/1stlvl_glm.feat/mc/prefiltered_func_data_mcf.mat/MAT_0031 (file)
add(ok): sub-02/1stlvl_glm.feat/mc/prefiltered_func_data_mcf.mat/MAT_0032 (file)
add(ok): sub-02/1stlvl_glm.feat/mc/prefiltered_func_data_mcf.mat/MAT_0033 (file)
add(ok): sub-02/1stlvl_glm.feat/mc/prefiltered_func_data_mcf.mat/MAT_0034 (file)
add(ok): sub-02/1stlvl_glm.feat/mc/prefiltered_func_data_mcf.mat/MAT_0035 (file)
add(ok): sub-02/1stlvl_glm.feat/mc/prefiltered_func_data_mcf.mat/MAT_0036 (file)
add(ok): sub-02/1stlvl_glm.feat/mc/prefiltered_func_data_mcf.mat/MAT_0037 (file)
add(ok): sub-02/1stlvl_glm.feat/mc/prefiltered_func_data_mcf.mat/MAT_0038 (file)
add(ok): sub-02/1stlvl_glm.feat/mc/prefiltered_func_data_mcf.mat/MAT_0039 (file)
add(ok): sub-02/1stlvl_glm.feat/mc/prefiltered_func_data_mcf.mat/MAT_0040 (file)
add(ok): sub-02/1stlvl_glm.feat/mc/prefiltered_func_data_mcf.mat/MAT_0041 (file)
add(ok): sub-02/1stlvl_glm.feat/mc/prefiltered_func_data_mcf.mat/MAT_0042 (file)
add(ok): sub-02/1stlvl_glm.feat/mc/prefiltered_func_data_mcf.mat/MAT_0043 (file)
add(ok): sub-02/1stlvl_glm.feat/mc/prefiltered_func_data_mcf.mat/MAT_0044 (file)
add(ok): sub-02/1stlvl_glm.feat/mc/prefiltered_func_data_mcf.mat/MAT_0045 (file)
add(ok): sub-02/1stlvl_glm.feat/mc/prefiltered_func_data_mcf.mat/MAT_0046 (file)
add(ok): sub-02/1stlvl_glm.feat/mc/prefiltered_func_data_mcf.mat/MAT_0047 (file)
add(ok): sub-02/1stlvl_glm.feat/mc/prefiltered_func_data_mcf.mat/MAT_0048 (file)
add(ok): sub-02/1stlvl_glm.feat/mc/prefiltered_func_data_mcf.mat/MAT_0049 (file)
add(ok): sub-02/1stlvl_glm.feat/mc/prefiltered_func_data_mcf.mat/MAT_0050 (file)
add(ok): sub-02/1stlvl_glm.feat/mc/prefiltered_func_data_mcf.mat/MAT_0051 (file)
add(ok): sub-02/1stlvl_glm.feat/mc/prefiltered_func_data_mcf.mat/MAT_0052 (file)
add(ok): sub-02/1stlvl_glm.feat/mc/prefiltered_func_data_mcf.mat/MAT_0053 (file)
add(ok): sub-02/1stlvl_glm.feat/mc/prefiltered_func_data_mcf.mat/MAT_0054 (file)
add(ok): sub-02/1stlvl_glm.feat/mc/prefiltered_func_data_mcf.mat/MAT_0055 (file)
add(ok): sub-02/1stlvl_glm.feat/mc/prefiltered_func_data_mcf.mat/MAT_0056 (file)
add(ok): sub-02/1stlvl_glm.feat/mc/prefiltered_func_data_mcf.mat/MAT_0057 (file)
add(ok): sub-02/1stlvl_glm.feat/mc/prefiltered_func_data_mcf.mat/MAT_0058 (file)
add(ok): sub-02/1stlvl_glm.feat/mc/prefiltered_func_data_mcf.mat/MAT_0059 (file)
add(ok): sub-02/1stlvl_glm.feat/mc/prefiltered_func_data_mcf.mat/MAT_0060 (file)
add(ok): sub-02/1stlvl_glm.feat/mc/prefiltered_func_data_mcf.mat/MAT_0061 (file)
add(ok): sub-02/1stlvl_glm.feat/mc/prefiltered_func_data_mcf.mat/MAT_0062 (file)
add(ok): sub-02/1stlvl_glm.feat/mc/prefiltered_func_data_mcf.mat/MAT_0063 (file)
add(ok): sub-02/1stlvl_glm.feat/mc/prefiltered_func_data_mcf.mat/MAT_0064 (file)
add(ok): sub-02/1stlvl_glm.feat/mc/prefiltered_func_data_mcf.mat/MAT_0065 (file)
add(ok): sub-02/1stlvl_glm.feat/mc/prefiltered_func_data_mcf.mat/MAT_0066 (file)
add(ok): sub-02/1stlvl_glm.feat/mc/prefiltered_func_data_mcf.mat/MAT_0067 (file)
add(ok): sub-02/1stlvl_glm.feat/mc/prefiltered_func_data_mcf.mat/MAT_0068 (file)
add(ok): sub-02/1stlvl_glm.feat/mc/prefiltered_func_data_mcf.mat/MAT_0069 (file)
add(ok): sub-02/1stlvl_glm.feat/mc/prefiltered_func_data_mcf.mat/MAT_0070 (file)
add(ok): sub-02/1stlvl_glm.feat/mc/prefiltered_func_data_mcf.mat/MAT_0071 (file)
add(ok): sub-02/1stlvl_glm.feat/mc/prefiltered_func_data_mcf.mat/MAT_0072 (file)
add(ok): sub-02/1stlvl_glm.feat/mc/prefiltered_func_data_mcf.mat/MAT_0073 (file)
add(ok): sub-02/1stlvl_glm.feat/mc/prefiltered_func_data_mcf.mat/MAT_0074 (file)
add(ok): sub-02/1stlvl_glm.feat/mc/prefiltered_func_data_mcf.mat/MAT_0075 (file)
add(ok): sub-02/1stlvl_glm.feat/mc/prefiltered_func_data_mcf.mat/MAT_0076 (file)

(continues on next page)

21.3. Step-by-Step 326

The DataLad Handbook, Release 0.12.0+519.g04985082

(continued from previous page)

add(ok): sub-02/1stlvl_glm.feat/mc/prefiltered_func_data_mcf.mat/MAT_0077 (file)
add(ok): sub-02/1stlvl_glm.feat/mc/prefiltered_func_data_mcf.mat/MAT_0078 (file)
add(ok): sub-02/1stlvl_glm.feat/mc/prefiltered_func_data_mcf.mat/MAT_0079 (file)
add(ok): sub-02/1stlvl_glm.feat/mc/prefiltered_func_data_mcf.mat/MAT_0080 (file)
add(ok): sub-02/1stlvl_glm.feat/mc/prefiltered_func_data_mcf.mat/MAT_0081 (file)
add(ok): sub-02/1stlvl_glm.feat/mc/prefiltered_func_data_mcf.mat/MAT_0082 (file)
add(ok): sub-02/1stlvl_glm.feat/mc/prefiltered_func_data_mcf.mat/MAT_0083 (file)
add(ok): sub-02/1stlvl_glm.feat/mc/prefiltered_func_data_mcf.mat/MAT_0084 (file)
add(ok): sub-02/1stlvl_glm.feat/mc/prefiltered_func_data_mcf.mat/MAT_0085 (file)
add(ok): sub-02/1stlvl_glm.feat/mc/prefiltered_func_data_mcf.mat/MAT_0086 (file)
add(ok): sub-02/1stlvl_glm.feat/mc/prefiltered_func_data_mcf.mat/MAT_0087 (file)
add(ok): sub-02/1stlvl_glm.feat/mc/prefiltered_func_data_mcf.mat/MAT_0088 (file)
add(ok): sub-02/1stlvl_glm.feat/mc/prefiltered_func_data_mcf.mat/MAT_0089 (file)
add(ok): sub-02/1stlvl_glm.feat/mc/prefiltered_func_data_mcf.mat/MAT_0090 (file)
add(ok): sub-02/1stlvl_glm.feat/mc/prefiltered_func_data_mcf.mat/MAT_0091 (file)
add(ok): sub-02/1stlvl_glm.feat/mc/prefiltered_func_data_mcf.mat/MAT_0092 (file)
add(ok): sub-02/1stlvl_glm.feat/mc/prefiltered_func_data_mcf.mat/MAT_0093 (file)
add(ok): sub-02/1stlvl_glm.feat/mc/prefiltered_func_data_mcf.mat/MAT_0094 (file)
add(ok): sub-02/1stlvl_glm.feat/mc/prefiltered_func_data_mcf.mat/MAT_0095 (file)
add(ok): sub-02/1stlvl_glm.feat/mc/prefiltered_func_data_mcf.mat/MAT_0096 (file)
add(ok): sub-02/1stlvl_glm.feat/mc/prefiltered_func_data_mcf.mat/MAT_0097 (file)
add(ok): sub-02/1stlvl_glm.feat/mc/prefiltered_func_data_mcf.mat/MAT_0098 (file)
add(ok): sub-02/1stlvl_glm.feat/mc/prefiltered_func_data_mcf.mat/MAT_0099 (file)
add(ok): sub-02/1stlvl_glm.feat/mc/prefiltered_func_data_mcf.mat/MAT_0100 (file)
add(ok): sub-02/1stlvl_glm.feat/mc/prefiltered_func_data_mcf.mat/MAT_0101 (file)
add(ok): sub-02/1stlvl_glm.feat/mc/prefiltered_func_data_mcf.mat/MAT_0102 (file)
add(ok): sub-02/1stlvl_glm.feat/mc/prefiltered_func_data_mcf.mat/MAT_0103 (file)
add(ok): sub-02/1stlvl_glm.feat/mc/prefiltered_func_data_mcf.mat/MAT_0104 (file)
add(ok): sub-02/1stlvl_glm.feat/mc/prefiltered_func_data_mcf.mat/MAT_0105 (file)
add(ok): sub-02/1stlvl_glm.feat/mc/prefiltered_func_data_mcf.mat/MAT_0106 (file)
add(ok): sub-02/1stlvl_glm.feat/mc/prefiltered_func_data_mcf.mat/MAT_0107 (file)
add(ok): sub-02/1stlvl_glm.feat/mc/prefiltered_func_data_mcf.mat/MAT_0108 (file)
add(ok): sub-02/1stlvl_glm.feat/mc/prefiltered_func_data_mcf.mat/MAT_0109 (file)
add(ok): sub-02/1stlvl_glm.feat/mc/prefiltered_func_data_mcf.mat/MAT_0110 (file)
add(ok): sub-02/1stlvl_glm.feat/mc/prefiltered_func_data_mcf.mat/MAT_0111 (file)
add(ok): sub-02/1stlvl_glm.feat/mc/prefiltered_func_data_mcf.mat/MAT_0112 (file)
add(ok): sub-02/1stlvl_glm.feat/mc/prefiltered_func_data_mcf.mat/MAT_0113 (file)
add(ok): sub-02/1stlvl_glm.feat/mc/prefiltered_func_data_mcf.mat/MAT_0114 (file)
add(ok): sub-02/1stlvl_glm.feat/mc/prefiltered_func_data_mcf.mat/MAT_0115 (file)
add(ok): sub-02/1stlvl_glm.feat/mc/prefiltered_func_data_mcf.mat/MAT_0116 (file)
add(ok): sub-02/1stlvl_glm.feat/mc/prefiltered_func_data_mcf.mat/MAT_0117 (file)
add(ok): sub-02/1stlvl_glm.feat/mc/prefiltered_func_data_mcf.mat/MAT_0118 (file)
add(ok): sub-02/1stlvl_glm.feat/mc/prefiltered_func_data_mcf.mat/MAT_0119 (file)
add(ok): sub-02/1stlvl_glm.feat/mc/prefiltered_func_data_mcf.mat/MAT_0120 (file)
add(ok): sub-02/1stlvl_glm.feat/mc/prefiltered_func_data_mcf.mat/MAT_0121 (file)
add(ok): sub-02/1stlvl_glm.feat/mc/prefiltered_func_data_mcf.mat/MAT_0122 (file)
add(ok): sub-02/1stlvl_glm.feat/mc/prefiltered_func_data_mcf.mat/MAT_0123 (file)
add(ok): sub-02/1stlvl_glm.feat/mc/prefiltered_func_data_mcf.mat/MAT_0124 (file)
add(ok): sub-02/1stlvl_glm.feat/mc/prefiltered_func_data_mcf.mat/MAT_0125 (file)
add(ok): sub-02/1stlvl_glm.feat/mc/prefiltered_func_data_mcf.mat/MAT_0126 (file)
add(ok): sub-02/1stlvl_glm.feat/mc/prefiltered_func_data_mcf.mat/MAT_0127 (file)
add(ok): sub-02/1stlvl_glm.feat/mc/prefiltered_func_data_mcf.mat/MAT_0128 (file)
add(ok): sub-02/1stlvl_glm.feat/mc/prefiltered_func_data_mcf.mat/MAT_0129 (file)
add(ok): sub-02/1stlvl_glm.feat/mc/prefiltered_func_data_mcf.mat/MAT_0130 (file)
add(ok): sub-02/1stlvl_glm.feat/mc/prefiltered_func_data_mcf.mat/MAT_0131 (file)
add(ok): sub-02/1stlvl_glm.feat/mc/prefiltered_func_data_mcf.mat/MAT_0132 (file)

(continues on next page)

21.3. Step-by-Step 327

The DataLad Handbook, Release 0.12.0+519.g04985082

(continued from previous page)

add(ok): sub-02/1stlvl_glm.feat/mc/prefiltered_func_data_mcf.mat/MAT_0133 (file)
add(ok): sub-02/1stlvl_glm.feat/mc/prefiltered_func_data_mcf.mat/MAT_0134 (file)
add(ok): sub-02/1stlvl_glm.feat/mc/prefiltered_func_data_mcf.mat/MAT_0135 (file)
add(ok): sub-02/1stlvl_glm.feat/mc/prefiltered_func_data_mcf.mat/MAT_0136 (file)
add(ok): sub-02/1stlvl_glm.feat/mc/prefiltered_func_data_mcf.mat/MAT_0137 (file)
add(ok): sub-02/1stlvl_glm.feat/mc/prefiltered_func_data_mcf.mat/MAT_0138 (file)
add(ok): sub-02/1stlvl_glm.feat/mc/prefiltered_func_data_mcf.mat/MAT_0139 (file)
add(ok): sub-02/1stlvl_glm.feat/mc/prefiltered_func_data_mcf.mat/MAT_0140 (file)
add(ok): sub-02/1stlvl_glm.feat/mc/prefiltered_func_data_mcf.mat/MAT_0141 (file)
add(ok): sub-02/1stlvl_glm.feat/mc/prefiltered_func_data_mcf.mat/MAT_0142 (file)
add(ok): sub-02/1stlvl_glm.feat/mc/prefiltered_func_data_mcf.mat/MAT_0143 (file)
add(ok): sub-02/1stlvl_glm.feat/mc/prefiltered_func_data_mcf.mat/MAT_0144 (file)
add(ok): sub-02/1stlvl_glm.feat/mc/prefiltered_func_data_mcf.mat/MAT_0145 (file)
add(ok): sub-02/1stlvl_glm.feat/mc/prefiltered_func_data_mcf.mat/MAT_0146 (file)
add(ok): sub-02/1stlvl_glm.feat/mc/prefiltered_func_data_mcf.mat/MAT_0147 (file)
add(ok): sub-02/1stlvl_glm.feat/mc/prefiltered_func_data_mcf.mat/MAT_0148 (file)
add(ok): sub-02/1stlvl_glm.feat/mc/prefiltered_func_data_mcf.mat/MAT_0149 (file)
add(ok): sub-02/1stlvl_glm.feat/mc/prefiltered_func_data_mcf.mat/MAT_0150 (file)
add(ok): sub-02/1stlvl_glm.feat/mc/prefiltered_func_data_mcf.mat/MAT_0151 (file)
add(ok): sub-02/1stlvl_glm.feat/mc/prefiltered_func_data_mcf.mat/MAT_0152 (file)
add(ok): sub-02/1stlvl_glm.feat/mc/prefiltered_func_data_mcf.mat/MAT_0153 (file)
add(ok): sub-02/1stlvl_glm.feat/mc/prefiltered_func_data_mcf.mat/MAT_0154 (file)
add(ok): sub-02/1stlvl_glm.feat/mc/prefiltered_func_data_mcf.mat/MAT_0155 (file)
add(ok): sub-02/1stlvl_glm.feat/mc/prefiltered_func_data_mcf.par (file)
add(ok): sub-02/1stlvl_glm.feat/mc/prefiltered_func_data_mcf_abs.rms (file)
add(ok): sub-02/1stlvl_glm.feat/mc/prefiltered_func_data_mcf_abs_mean.rms (file)
add(ok): sub-02/1stlvl_glm.feat/mc/prefiltered_func_data_mcf_final.par (file)
add(ok): sub-02/1stlvl_glm.feat/mc/prefiltered_func_data_mcf_rel.rms (file)
add(ok): sub-02/1stlvl_glm.feat/mc/prefiltered_func_data_mcf_rel_mean.rms (file)
add(ok): sub-02/1stlvl_glm.feat/mc/rot.png (file)
add(ok): sub-02/1stlvl_glm.feat/mc/trans.png (file)
add(ok): sub-02/1stlvl_glm.feat/mean_func.nii.gz (file)
add(ok): sub-02/1stlvl_glm.feat/rendered_thresh_zstat1.nii.gz (file)
add(ok): sub-02/1stlvl_glm.feat/rendered_thresh_zstat1.png (file)
add(ok): sub-02/1stlvl_glm.feat/report.html (file)
add(ok): sub-02/1stlvl_glm.feat/report_log.html (file)
add(ok): sub-02/1stlvl_glm.feat/report_poststats.html (file)
add(ok): sub-02/1stlvl_glm.feat/report_prestats.html (file)
add(ok): sub-02/1stlvl_glm.feat/report_reg.html (file)
add(ok): sub-02/1stlvl_glm.feat/report_stats.html (file)
add(ok): sub-02/1stlvl_glm.feat/stats/cope1.nii.gz (file)
add(ok): sub-02/1stlvl_glm.feat/stats/dof (file)
add(ok): sub-02/1stlvl_glm.feat/stats/logfile (file)
add(ok): sub-02/1stlvl_glm.feat/stats/pe1.nii.gz (file)
add(ok): sub-02/1stlvl_glm.feat/stats/pe10.nii.gz (file)
add(ok): sub-02/1stlvl_glm.feat/stats/pe11.nii.gz (file)
add(ok): sub-02/1stlvl_glm.feat/stats/pe12.nii.gz (file)
add(ok): sub-02/1stlvl_glm.feat/stats/pe13.nii.gz (file)
add(ok): sub-02/1stlvl_glm.feat/stats/pe14.nii.gz (file)
add(ok): sub-02/1stlvl_glm.feat/stats/pe15.nii.gz (file)
add(ok): sub-02/1stlvl_glm.feat/stats/pe16.nii.gz (file)
add(ok): sub-02/1stlvl_glm.feat/stats/pe17.nii.gz (file)
add(ok): sub-02/1stlvl_glm.feat/stats/pe18.nii.gz (file)
add(ok): sub-02/1stlvl_glm.feat/stats/pe2.nii.gz (file)
add(ok): sub-02/1stlvl_glm.feat/stats/pe3.nii.gz (file)
add(ok): sub-02/1stlvl_glm.feat/stats/pe4.nii.gz (file)

(continues on next page)

21.3. Step-by-Step 328

The DataLad Handbook, Release 0.12.0+519.g04985082

(continued from previous page)

add(ok): sub-02/1stlvl_glm.feat/stats/pe5.nii.gz (file)
add(ok): sub-02/1stlvl_glm.feat/stats/pe6.nii.gz (file)
add(ok): sub-02/1stlvl_glm.feat/stats/pe7.nii.gz (file)
add(ok): sub-02/1stlvl_glm.feat/stats/pe8.nii.gz (file)
add(ok): sub-02/1stlvl_glm.feat/stats/pe9.nii.gz (file)
add(ok): sub-02/1stlvl_glm.feat/stats/res4d.nii.gz (file)
add(ok): sub-02/1stlvl_glm.feat/stats/sigmasquareds.nii.gz (file)
add(ok): sub-02/1stlvl_glm.feat/stats/smoothness (file)
add(ok): sub-02/1stlvl_glm.feat/stats/threshac1.nii.gz (file)
add(ok): sub-02/1stlvl_glm.feat/stats/tstat1.nii.gz (file)
add(ok): sub-02/1stlvl_glm.feat/stats/varcope1.nii.gz (file)
add(ok): sub-02/1stlvl_glm.feat/stats/zstat1.nii.gz (file)
add(ok): sub-02/1stlvl_glm.feat/thresh_zstat1.nii.gz (file)
add(ok): sub-02/1stlvl_glm.feat/thresh_zstat1.vol (file)
add(ok): sub-02/1stlvl_glm.feat/tsplot/ps_tsplot_zstat1_ev1.png (file)
add(ok): sub-02/1stlvl_glm.feat/tsplot/ps_tsplot_zstat1_ev1.txt (file)
add(ok): sub-02/1stlvl_glm.feat/tsplot/ps_tsplot_zstat1_ev10.png (file)
add(ok): sub-02/1stlvl_glm.feat/tsplot/ps_tsplot_zstat1_ev10.txt (file)
add(ok): sub-02/1stlvl_glm.feat/tsplot/ps_tsplot_zstat1_ev10p.png (file)
add(ok): sub-02/1stlvl_glm.feat/tsplot/ps_tsplot_zstat1_ev11.png (file)
add(ok): sub-02/1stlvl_glm.feat/tsplot/ps_tsplot_zstat1_ev11.txt (file)
add(ok): sub-02/1stlvl_glm.feat/tsplot/ps_tsplot_zstat1_ev11p.png (file)
add(ok): sub-02/1stlvl_glm.feat/tsplot/ps_tsplot_zstat1_ev12.png (file)
add(ok): sub-02/1stlvl_glm.feat/tsplot/ps_tsplot_zstat1_ev12.txt (file)
add(ok): sub-02/1stlvl_glm.feat/tsplot/ps_tsplot_zstat1_ev12p.png (file)
add(ok): sub-02/1stlvl_glm.feat/tsplot/ps_tsplot_zstat1_ev1p.png (file)
add(ok): sub-02/1stlvl_glm.feat/tsplot/ps_tsplot_zstat1_ev2.png (file)
add(ok): sub-02/1stlvl_glm.feat/tsplot/ps_tsplot_zstat1_ev2.txt (file)
add(ok): sub-02/1stlvl_glm.feat/tsplot/ps_tsplot_zstat1_ev2p.png (file)
add(ok): sub-02/1stlvl_glm.feat/tsplot/ps_tsplot_zstat1_ev3.png (file)
add(ok): sub-02/1stlvl_glm.feat/tsplot/ps_tsplot_zstat1_ev3.txt (file)
add(ok): sub-02/1stlvl_glm.feat/tsplot/ps_tsplot_zstat1_ev3p.png (file)
add(ok): sub-02/1stlvl_glm.feat/tsplot/ps_tsplot_zstat1_ev4.png (file)
add(ok): sub-02/1stlvl_glm.feat/tsplot/ps_tsplot_zstat1_ev4.txt (file)
add(ok): sub-02/1stlvl_glm.feat/tsplot/ps_tsplot_zstat1_ev4p.png (file)
add(ok): sub-02/1stlvl_glm.feat/tsplot/ps_tsplot_zstat1_ev5.png (file)
add(ok): sub-02/1stlvl_glm.feat/tsplot/ps_tsplot_zstat1_ev5.txt (file)
add(ok): sub-02/1stlvl_glm.feat/tsplot/ps_tsplot_zstat1_ev5p.png (file)
add(ok): sub-02/1stlvl_glm.feat/tsplot/ps_tsplot_zstat1_ev6.png (file)
add(ok): sub-02/1stlvl_glm.feat/tsplot/ps_tsplot_zstat1_ev6.txt (file)
add(ok): sub-02/1stlvl_glm.feat/tsplot/ps_tsplot_zstat1_ev6p.png (file)
add(ok): sub-02/1stlvl_glm.feat/tsplot/ps_tsplot_zstat1_ev7.png (file)
add(ok): sub-02/1stlvl_glm.feat/tsplot/ps_tsplot_zstat1_ev7.txt (file)
add(ok): sub-02/1stlvl_glm.feat/tsplot/ps_tsplot_zstat1_ev7p.png (file)
add(ok): sub-02/1stlvl_glm.feat/tsplot/ps_tsplot_zstat1_ev8.png (file)
add(ok): sub-02/1stlvl_glm.feat/tsplot/ps_tsplot_zstat1_ev8.txt (file)
add(ok): sub-02/1stlvl_glm.feat/tsplot/ps_tsplot_zstat1_ev8p.png (file)
add(ok): sub-02/1stlvl_glm.feat/tsplot/ps_tsplot_zstat1_ev9.png (file)
add(ok): sub-02/1stlvl_glm.feat/tsplot/ps_tsplot_zstat1_ev9.txt (file)
add(ok): sub-02/1stlvl_glm.feat/tsplot/ps_tsplot_zstat1_ev9p.png (file)
add(ok): sub-02/1stlvl_glm.feat/tsplot/ps_tsplotc_zstat1_ev1.png (file)
add(ok): sub-02/1stlvl_glm.feat/tsplot/ps_tsplotc_zstat1_ev1.txt (file)
add(ok): sub-02/1stlvl_glm.feat/tsplot/ps_tsplotc_zstat1_ev10.png (file)
add(ok): sub-02/1stlvl_glm.feat/tsplot/ps_tsplotc_zstat1_ev10.txt (file)
add(ok): sub-02/1stlvl_glm.feat/tsplot/ps_tsplotc_zstat1_ev10p.png (file)
add(ok): sub-02/1stlvl_glm.feat/tsplot/ps_tsplotc_zstat1_ev11.png (file)

(continues on next page)

21.3. Step-by-Step 329

The DataLad Handbook, Release 0.12.0+519.g04985082

(continued from previous page)

add(ok): sub-02/1stlvl_glm.feat/tsplot/ps_tsplotc_zstat1_ev11.txt (file)
add(ok): sub-02/1stlvl_glm.feat/tsplot/ps_tsplotc_zstat1_ev11p.png (file)
add(ok): sub-02/1stlvl_glm.feat/tsplot/ps_tsplotc_zstat1_ev12.png (file)
add(ok): sub-02/1stlvl_glm.feat/tsplot/ps_tsplotc_zstat1_ev12.txt (file)
add(ok): sub-02/1stlvl_glm.feat/tsplot/ps_tsplotc_zstat1_ev12p.png (file)
add(ok): sub-02/1stlvl_glm.feat/tsplot/ps_tsplotc_zstat1_ev1p.png (file)
add(ok): sub-02/1stlvl_glm.feat/tsplot/ps_tsplotc_zstat1_ev2.png (file)
add(ok): sub-02/1stlvl_glm.feat/tsplot/ps_tsplotc_zstat1_ev2.txt (file)
add(ok): sub-02/1stlvl_glm.feat/tsplot/ps_tsplotc_zstat1_ev2p.png (file)
add(ok): sub-02/1stlvl_glm.feat/tsplot/ps_tsplotc_zstat1_ev3.png (file)
add(ok): sub-02/1stlvl_glm.feat/tsplot/ps_tsplotc_zstat1_ev3.txt (file)
add(ok): sub-02/1stlvl_glm.feat/tsplot/ps_tsplotc_zstat1_ev3p.png (file)
add(ok): sub-02/1stlvl_glm.feat/tsplot/ps_tsplotc_zstat1_ev4.png (file)
add(ok): sub-02/1stlvl_glm.feat/tsplot/ps_tsplotc_zstat1_ev4.txt (file)
add(ok): sub-02/1stlvl_glm.feat/tsplot/ps_tsplotc_zstat1_ev4p.png (file)
add(ok): sub-02/1stlvl_glm.feat/tsplot/ps_tsplotc_zstat1_ev5.png (file)
add(ok): sub-02/1stlvl_glm.feat/tsplot/ps_tsplotc_zstat1_ev5.txt (file)
add(ok): sub-02/1stlvl_glm.feat/tsplot/ps_tsplotc_zstat1_ev5p.png (file)
add(ok): sub-02/1stlvl_glm.feat/tsplot/ps_tsplotc_zstat1_ev6.png (file)
add(ok): sub-02/1stlvl_glm.feat/tsplot/ps_tsplotc_zstat1_ev6.txt (file)
add(ok): sub-02/1stlvl_glm.feat/tsplot/ps_tsplotc_zstat1_ev6p.png (file)
add(ok): sub-02/1stlvl_glm.feat/tsplot/ps_tsplotc_zstat1_ev7.png (file)
add(ok): sub-02/1stlvl_glm.feat/tsplot/ps_tsplotc_zstat1_ev7.txt (file)
add(ok): sub-02/1stlvl_glm.feat/tsplot/ps_tsplotc_zstat1_ev7p.png (file)
add(ok): sub-02/1stlvl_glm.feat/tsplot/ps_tsplotc_zstat1_ev8.png (file)
add(ok): sub-02/1stlvl_glm.feat/tsplot/ps_tsplotc_zstat1_ev8.txt (file)
add(ok): sub-02/1stlvl_glm.feat/tsplot/ps_tsplotc_zstat1_ev8p.png (file)
add(ok): sub-02/1stlvl_glm.feat/tsplot/ps_tsplotc_zstat1_ev9.png (file)
add(ok): sub-02/1stlvl_glm.feat/tsplot/ps_tsplotc_zstat1_ev9.txt (file)
add(ok): sub-02/1stlvl_glm.feat/tsplot/ps_tsplotc_zstat1_ev9p.png (file)
add(ok): sub-02/1stlvl_glm.feat/tsplot/tsplot_index (file)
add(ok): sub-02/1stlvl_glm.feat/tsplot/tsplot_index.html (file)
add(ok): sub-02/1stlvl_glm.feat/tsplot/tsplot_zstat1.html (file)
add(ok): sub-02/1stlvl_glm.feat/tsplot/tsplot_zstat1.png (file)
add(ok): sub-02/1stlvl_glm.feat/tsplot/tsplot_zstat1.txt (file)
add(ok): sub-02/1stlvl_glm.feat/tsplot/tsplot_zstat1p.png (file)
add(ok): sub-02/1stlvl_glm.feat/tsplot/tsplotc_zstat1.png (file)
add(ok): sub-02/1stlvl_glm.feat/tsplot/tsplotc_zstat1.txt (file)
add(ok): sub-02/1stlvl_glm.feat/tsplot/tsplotc_zstat1p.png (file)
save(ok): . (dataset)
action summary:
add (ok: 344)
get (notneeded: 4, ok: 1)
save (notneeded: 1, ok: 1)

Once this command finishes, DataLad will have captured the entire FSL output, and the dataset
will contain a complete record all the way from the input BIDS dataset to the GLM results. The
BIDS subdataset in turn has a complete record of all processing down from the raw DICOMs
onwards.

Note: See how many files were created and added in this computation of a single participant?
If your study has many participants, analyses like the one above could inflate your dataset.
Please check out the chapter Go big or go home (page 274). in particular the section Calculate
in greater numbers (page 278) for tips and tricks on how to create analyses datasets that scale.

21.3. Step-by-Step 330

The DataLad Handbook, Release 0.12.0+519.g04985082

Archive data and results

After study completion it is important to properly archive data and results, for example for
future inquiries by reviewers or readers of the associated publication. Thanks to the modularity
of the study units, this tasks is easy and avoids needless duplication.

The raw data is tracked in its own dataset (localizer_scans) that only needs to be archived
once, regardless of how many analysis are using it as input. This means that we can “throw
away” this subdataset copy within this analysis dataset. DataLad can re-obtain the correct
version at any point in the future, as long as the recorded location remains accessible.

To make sure we’re not deleting information we are not aware of, datalad diff and git log
can help to verify that the subdataset is in the same state as when it was initially added:

$ datalad diff -- inputs

The command does not show any output, thus indicating that there is indeed no difference. git
log confirms that the only action that was performed on inputs/ was the addition of it as a
subdataset:

$ git log -- inputs
commit 721add9dec06817845a62a30e1dcc50cc4bbc61e
Author: Elena Piscopia <elena@example.net>
Date: Mon May 18 07:49:22 2020 +0200

[DATALAD] Recorded changes

Since the state of the subdataset is exactly the state of the original localizer_scans dataset it
is safe to uninstall it.

$ datalad uninstall --dataset . inputs --recursive
drop(ok): inputs/rawdata/sub-02/func/sub-02_task-oneback_run-01_bold.nii.gz (file)
drop(ok): inputs/rawdata/sub-02/func/sub-02_task-oneback_run-01_events.tsv (file)
drop(ok): inputs/rawdata (directory)
uninstall(ok): inputs/rawdata (dataset)
action summary:
drop (ok: 3)
uninstall (ok: 1)

Prior to archiving the results, we can go one step further and verify their computational repro-
ducibility. DataLad’s rerun command is capable of “replaying” any recorded command. The
following command re-executes the FSL analysis by re-running everything since the dataset
was tagged as ready4analysis). It will record the recomputed results in a separate Git branch
named verify. Afterwards, we can automatically compare these new results to the original
ones in the master branch. We will see that all outputs can be reproduced in bit-identical form.
The only changes are observed in log files that contain volatile information, such as time steps.

$ datalad rerun --branch verify --onto ready4analysis --since ready4analysis
[INFO] == Command start (output follows) =====
[INFO] == Command exit (modification check follows) =====
[INFO] Making sure inputs are available (this may take some time)
[INFO] Cloning dataset to Dataset(/home/me/usecases/repro2/glm_analysis/inputs/rawdata)
[INFO] Attempting to clone from /home/me/usecases/repro2/glm_analysis/../localizer_scans␣
→˓to /home/me/usecases/repro2/glm_analysis/inputs/rawdata
[INFO] Completed clone attempts for Dataset(/home/me/usecases/repro2/glm_analysis/inputs/
→˓rawdata)

(continues on next page)

21.3. Step-by-Step 331

The DataLad Handbook, Release 0.12.0+519.g04985082

(continued from previous page)

[INFO] == Command start (output follows) =====
To view the FEAT progress and final report, point your web browser at /home/me/usecases/
→˓repro2/glm_analysis/sub-02/1stlvl_glm.feat/report_log.html
[INFO] == Command exit (modification check follows) =====
add(ok): sub-02/1stlvl_design.fsf (file)
save(ok): . (dataset)
get(ok): inputs/rawdata/sub-02/func/sub-02_task-oneback_run-01_bold.nii.gz (file) [from␣
→˓origin...]
add(ok): sub-02/1stlvl_glm.feat/.files/fsl.css (file)
add(ok): sub-02/1stlvl_glm.feat/.files/images/3.1r.jpg (file)
add(ok): sub-02/1stlvl_glm.feat/.files/images/3.jpg (file)
add(ok): sub-02/1stlvl_glm.feat/.files/images/flirt-bg.jpg (file)
add(ok): sub-02/1stlvl_glm.feat/.files/images/fsl-bg (file)
add(ok): sub-02/1stlvl_glm.feat/.files/images/fsl-bg.jpg (file)
add(ok): sub-02/1stlvl_glm.feat/.files/images/fsl-logo-big.jpg (file)
add(ok): sub-02/1stlvl_glm.feat/.files/images/fsl-logo.gif (file)
add(ok): sub-02/1stlvl_glm.feat/.files/images/fsl-logo.jpg (file)
add(ok): sub-02/1stlvl_glm.feat/.files/images/fsl-logo.png (file)
add(ok): sub-02/1stlvl_glm.feat/.files/images/fsl-macos-snapshot.tiff (file)
add(ok): sub-02/1stlvl_glm.feat/.files/images/fslstart.jpg (file)
add(ok): sub-02/1stlvl_glm.feat/.files/images/fslstart.png (file)
add(ok): sub-02/1stlvl_glm.feat/.files/images/fugue-bg.jpg (file)
add(ok): sub-02/1stlvl_glm.feat/.files/images/tick.gif (file)
add(ok): sub-02/1stlvl_glm.feat/.files/images/vert2.png (file)
add(ok): sub-02/1stlvl_glm.feat/.ramp.gif (file)
add(ok): sub-02/1stlvl_glm.feat/absbrainthresh.txt (file)
add(ok): sub-02/1stlvl_glm.feat/cluster_mask_zstat1.nii.gz (file)
add(ok): sub-02/1stlvl_glm.feat/cluster_zstat1.html (file)
add(ok): sub-02/1stlvl_glm.feat/cluster_zstat1.txt (file)
add(ok): sub-02/1stlvl_glm.feat/confoundevs.txt (file)
add(ok): sub-02/1stlvl_glm.feat/custom_timing_files/ev1.txt (file)
add(ok): sub-02/1stlvl_glm.feat/custom_timing_files/ev2.txt (file)
add(ok): sub-02/1stlvl_glm.feat/custom_timing_files/ev3.txt (file)
add(ok): sub-02/1stlvl_glm.feat/custom_timing_files/ev4.txt (file)
add(ok): sub-02/1stlvl_glm.feat/custom_timing_files/ev5.txt (file)
add(ok): sub-02/1stlvl_glm.feat/custom_timing_files/ev6.txt (file)
add(ok): sub-02/1stlvl_glm.feat/design.con (file)
add(ok): sub-02/1stlvl_glm.feat/design.frf (file)
add(ok): sub-02/1stlvl_glm.feat/design.fsf (file)
add(ok): sub-02/1stlvl_glm.feat/design.mat (file)
add(ok): sub-02/1stlvl_glm.feat/design.min (file)
add(ok): sub-02/1stlvl_glm.feat/design.png (file)
add(ok): sub-02/1stlvl_glm.feat/design.ppm (file)
add(ok): sub-02/1stlvl_glm.feat/design.trg (file)
add(ok): sub-02/1stlvl_glm.feat/design_cov.png (file)
add(ok): sub-02/1stlvl_glm.feat/design_cov.ppm (file)
add(ok): sub-02/1stlvl_glm.feat/example_func.nii.gz (file)
add(ok): sub-02/1stlvl_glm.feat/filtered_func_data.nii.gz (file)
add(ok): sub-02/1stlvl_glm.feat/lmax_zstat1.txt (file)
add(ok): sub-02/1stlvl_glm.feat/logs/feat0 (file)
add(ok): sub-02/1stlvl_glm.feat/logs/feat0_init.e299367 (file)
add(ok): sub-02/1stlvl_glm.feat/logs/feat0_init.o299367 (file)
add(ok): sub-02/1stlvl_glm.feat/logs/feat1 (file)
add(ok): sub-02/1stlvl_glm.feat/logs/feat1a_init (file)
add(ok): sub-02/1stlvl_glm.feat/logs/feat2_pre (file)
add(ok): sub-02/1stlvl_glm.feat/logs/feat2_pre.e299450 (file)

(continues on next page)

21.3. Step-by-Step 332

The DataLad Handbook, Release 0.12.0+519.g04985082

(continued from previous page)

add(ok): sub-02/1stlvl_glm.feat/logs/feat2_pre.o299450 (file)
add(ok): sub-02/1stlvl_glm.feat/logs/feat3_film.e299957 (file)
add(ok): sub-02/1stlvl_glm.feat/logs/feat3_film.o299957 (file)
add(ok): sub-02/1stlvl_glm.feat/logs/feat3_stats (file)
add(ok): sub-02/1stlvl_glm.feat/logs/feat4_post (file)
add(ok): sub-02/1stlvl_glm.feat/logs/feat4_post.e300332 (file)
add(ok): sub-02/1stlvl_glm.feat/logs/feat4_post.o300332 (file)
add(ok): sub-02/1stlvl_glm.feat/logs/feat5_stop.e300964 (file)
add(ok): sub-02/1stlvl_glm.feat/logs/feat5_stop.o300964 (file)
add(ok): sub-02/1stlvl_glm.feat/logs/feat9 (file)
add(ok): sub-02/1stlvl_glm.feat/mask.nii.gz (file)
add(ok): sub-02/1stlvl_glm.feat/mc/disp.png (file)
add(ok): sub-02/1stlvl_glm.feat/mc/prefiltered_func_data_mcf.mat/MAT_0000 (file)
add(ok): sub-02/1stlvl_glm.feat/mc/prefiltered_func_data_mcf.mat/MAT_0001 (file)
add(ok): sub-02/1stlvl_glm.feat/mc/prefiltered_func_data_mcf.mat/MAT_0002 (file)
add(ok): sub-02/1stlvl_glm.feat/mc/prefiltered_func_data_mcf.mat/MAT_0003 (file)
add(ok): sub-02/1stlvl_glm.feat/mc/prefiltered_func_data_mcf.mat/MAT_0004 (file)
add(ok): sub-02/1stlvl_glm.feat/mc/prefiltered_func_data_mcf.mat/MAT_0005 (file)
add(ok): sub-02/1stlvl_glm.feat/mc/prefiltered_func_data_mcf.mat/MAT_0006 (file)
add(ok): sub-02/1stlvl_glm.feat/mc/prefiltered_func_data_mcf.mat/MAT_0007 (file)
add(ok): sub-02/1stlvl_glm.feat/mc/prefiltered_func_data_mcf.mat/MAT_0008 (file)
add(ok): sub-02/1stlvl_glm.feat/mc/prefiltered_func_data_mcf.mat/MAT_0009 (file)
add(ok): sub-02/1stlvl_glm.feat/mc/prefiltered_func_data_mcf.mat/MAT_0010 (file)
add(ok): sub-02/1stlvl_glm.feat/mc/prefiltered_func_data_mcf.mat/MAT_0011 (file)
add(ok): sub-02/1stlvl_glm.feat/mc/prefiltered_func_data_mcf.mat/MAT_0012 (file)
add(ok): sub-02/1stlvl_glm.feat/mc/prefiltered_func_data_mcf.mat/MAT_0013 (file)
add(ok): sub-02/1stlvl_glm.feat/mc/prefiltered_func_data_mcf.mat/MAT_0014 (file)
add(ok): sub-02/1stlvl_glm.feat/mc/prefiltered_func_data_mcf.mat/MAT_0015 (file)
add(ok): sub-02/1stlvl_glm.feat/mc/prefiltered_func_data_mcf.mat/MAT_0016 (file)
add(ok): sub-02/1stlvl_glm.feat/mc/prefiltered_func_data_mcf.mat/MAT_0017 (file)
add(ok): sub-02/1stlvl_glm.feat/mc/prefiltered_func_data_mcf.mat/MAT_0018 (file)
add(ok): sub-02/1stlvl_glm.feat/mc/prefiltered_func_data_mcf.mat/MAT_0019 (file)
add(ok): sub-02/1stlvl_glm.feat/mc/prefiltered_func_data_mcf.mat/MAT_0020 (file)
add(ok): sub-02/1stlvl_glm.feat/mc/prefiltered_func_data_mcf.mat/MAT_0021 (file)
add(ok): sub-02/1stlvl_glm.feat/mc/prefiltered_func_data_mcf.mat/MAT_0022 (file)
add(ok): sub-02/1stlvl_glm.feat/mc/prefiltered_func_data_mcf.mat/MAT_0023 (file)
add(ok): sub-02/1stlvl_glm.feat/mc/prefiltered_func_data_mcf.mat/MAT_0024 (file)
add(ok): sub-02/1stlvl_glm.feat/mc/prefiltered_func_data_mcf.mat/MAT_0025 (file)
add(ok): sub-02/1stlvl_glm.feat/mc/prefiltered_func_data_mcf.mat/MAT_0026 (file)
add(ok): sub-02/1stlvl_glm.feat/mc/prefiltered_func_data_mcf.mat/MAT_0027 (file)
add(ok): sub-02/1stlvl_glm.feat/mc/prefiltered_func_data_mcf.mat/MAT_0028 (file)
add(ok): sub-02/1stlvl_glm.feat/mc/prefiltered_func_data_mcf.mat/MAT_0029 (file)
add(ok): sub-02/1stlvl_glm.feat/mc/prefiltered_func_data_mcf.mat/MAT_0030 (file)
add(ok): sub-02/1stlvl_glm.feat/mc/prefiltered_func_data_mcf.mat/MAT_0031 (file)
add(ok): sub-02/1stlvl_glm.feat/mc/prefiltered_func_data_mcf.mat/MAT_0032 (file)
add(ok): sub-02/1stlvl_glm.feat/mc/prefiltered_func_data_mcf.mat/MAT_0033 (file)
add(ok): sub-02/1stlvl_glm.feat/mc/prefiltered_func_data_mcf.mat/MAT_0034 (file)
add(ok): sub-02/1stlvl_glm.feat/mc/prefiltered_func_data_mcf.mat/MAT_0035 (file)
add(ok): sub-02/1stlvl_glm.feat/mc/prefiltered_func_data_mcf.mat/MAT_0036 (file)
add(ok): sub-02/1stlvl_glm.feat/mc/prefiltered_func_data_mcf.mat/MAT_0037 (file)
add(ok): sub-02/1stlvl_glm.feat/mc/prefiltered_func_data_mcf.mat/MAT_0038 (file)
add(ok): sub-02/1stlvl_glm.feat/mc/prefiltered_func_data_mcf.mat/MAT_0039 (file)
add(ok): sub-02/1stlvl_glm.feat/mc/prefiltered_func_data_mcf.mat/MAT_0040 (file)
add(ok): sub-02/1stlvl_glm.feat/mc/prefiltered_func_data_mcf.mat/MAT_0041 (file)
add(ok): sub-02/1stlvl_glm.feat/mc/prefiltered_func_data_mcf.mat/MAT_0042 (file)
add(ok): sub-02/1stlvl_glm.feat/mc/prefiltered_func_data_mcf.mat/MAT_0043 (file)

(continues on next page)

21.3. Step-by-Step 333

The DataLad Handbook, Release 0.12.0+519.g04985082

(continued from previous page)

add(ok): sub-02/1stlvl_glm.feat/mc/prefiltered_func_data_mcf.mat/MAT_0044 (file)
add(ok): sub-02/1stlvl_glm.feat/mc/prefiltered_func_data_mcf.mat/MAT_0045 (file)
add(ok): sub-02/1stlvl_glm.feat/mc/prefiltered_func_data_mcf.mat/MAT_0046 (file)
add(ok): sub-02/1stlvl_glm.feat/mc/prefiltered_func_data_mcf.mat/MAT_0047 (file)
add(ok): sub-02/1stlvl_glm.feat/mc/prefiltered_func_data_mcf.mat/MAT_0048 (file)
add(ok): sub-02/1stlvl_glm.feat/mc/prefiltered_func_data_mcf.mat/MAT_0049 (file)
add(ok): sub-02/1stlvl_glm.feat/mc/prefiltered_func_data_mcf.mat/MAT_0050 (file)
add(ok): sub-02/1stlvl_glm.feat/mc/prefiltered_func_data_mcf.mat/MAT_0051 (file)
add(ok): sub-02/1stlvl_glm.feat/mc/prefiltered_func_data_mcf.mat/MAT_0052 (file)
add(ok): sub-02/1stlvl_glm.feat/mc/prefiltered_func_data_mcf.mat/MAT_0053 (file)
add(ok): sub-02/1stlvl_glm.feat/mc/prefiltered_func_data_mcf.mat/MAT_0054 (file)
add(ok): sub-02/1stlvl_glm.feat/mc/prefiltered_func_data_mcf.mat/MAT_0055 (file)
add(ok): sub-02/1stlvl_glm.feat/mc/prefiltered_func_data_mcf.mat/MAT_0056 (file)
add(ok): sub-02/1stlvl_glm.feat/mc/prefiltered_func_data_mcf.mat/MAT_0057 (file)
add(ok): sub-02/1stlvl_glm.feat/mc/prefiltered_func_data_mcf.mat/MAT_0058 (file)
add(ok): sub-02/1stlvl_glm.feat/mc/prefiltered_func_data_mcf.mat/MAT_0059 (file)
add(ok): sub-02/1stlvl_glm.feat/mc/prefiltered_func_data_mcf.mat/MAT_0060 (file)
add(ok): sub-02/1stlvl_glm.feat/mc/prefiltered_func_data_mcf.mat/MAT_0061 (file)
add(ok): sub-02/1stlvl_glm.feat/mc/prefiltered_func_data_mcf.mat/MAT_0062 (file)
add(ok): sub-02/1stlvl_glm.feat/mc/prefiltered_func_data_mcf.mat/MAT_0063 (file)
add(ok): sub-02/1stlvl_glm.feat/mc/prefiltered_func_data_mcf.mat/MAT_0064 (file)
add(ok): sub-02/1stlvl_glm.feat/mc/prefiltered_func_data_mcf.mat/MAT_0065 (file)
add(ok): sub-02/1stlvl_glm.feat/mc/prefiltered_func_data_mcf.mat/MAT_0066 (file)
add(ok): sub-02/1stlvl_glm.feat/mc/prefiltered_func_data_mcf.mat/MAT_0067 (file)
add(ok): sub-02/1stlvl_glm.feat/mc/prefiltered_func_data_mcf.mat/MAT_0068 (file)
add(ok): sub-02/1stlvl_glm.feat/mc/prefiltered_func_data_mcf.mat/MAT_0069 (file)
add(ok): sub-02/1stlvl_glm.feat/mc/prefiltered_func_data_mcf.mat/MAT_0070 (file)
add(ok): sub-02/1stlvl_glm.feat/mc/prefiltered_func_data_mcf.mat/MAT_0071 (file)
add(ok): sub-02/1stlvl_glm.feat/mc/prefiltered_func_data_mcf.mat/MAT_0072 (file)
add(ok): sub-02/1stlvl_glm.feat/mc/prefiltered_func_data_mcf.mat/MAT_0073 (file)
add(ok): sub-02/1stlvl_glm.feat/mc/prefiltered_func_data_mcf.mat/MAT_0074 (file)
add(ok): sub-02/1stlvl_glm.feat/mc/prefiltered_func_data_mcf.mat/MAT_0075 (file)
add(ok): sub-02/1stlvl_glm.feat/mc/prefiltered_func_data_mcf.mat/MAT_0076 (file)
add(ok): sub-02/1stlvl_glm.feat/mc/prefiltered_func_data_mcf.mat/MAT_0077 (file)
add(ok): sub-02/1stlvl_glm.feat/mc/prefiltered_func_data_mcf.mat/MAT_0078 (file)
add(ok): sub-02/1stlvl_glm.feat/mc/prefiltered_func_data_mcf.mat/MAT_0079 (file)
add(ok): sub-02/1stlvl_glm.feat/mc/prefiltered_func_data_mcf.mat/MAT_0080 (file)
add(ok): sub-02/1stlvl_glm.feat/mc/prefiltered_func_data_mcf.mat/MAT_0081 (file)
add(ok): sub-02/1stlvl_glm.feat/mc/prefiltered_func_data_mcf.mat/MAT_0082 (file)
add(ok): sub-02/1stlvl_glm.feat/mc/prefiltered_func_data_mcf.mat/MAT_0083 (file)
add(ok): sub-02/1stlvl_glm.feat/mc/prefiltered_func_data_mcf.mat/MAT_0084 (file)
add(ok): sub-02/1stlvl_glm.feat/mc/prefiltered_func_data_mcf.mat/MAT_0085 (file)
add(ok): sub-02/1stlvl_glm.feat/mc/prefiltered_func_data_mcf.mat/MAT_0086 (file)
add(ok): sub-02/1stlvl_glm.feat/mc/prefiltered_func_data_mcf.mat/MAT_0087 (file)
add(ok): sub-02/1stlvl_glm.feat/mc/prefiltered_func_data_mcf.mat/MAT_0088 (file)
add(ok): sub-02/1stlvl_glm.feat/mc/prefiltered_func_data_mcf.mat/MAT_0089 (file)
add(ok): sub-02/1stlvl_glm.feat/mc/prefiltered_func_data_mcf.mat/MAT_0090 (file)
add(ok): sub-02/1stlvl_glm.feat/mc/prefiltered_func_data_mcf.mat/MAT_0091 (file)
add(ok): sub-02/1stlvl_glm.feat/mc/prefiltered_func_data_mcf.mat/MAT_0092 (file)
add(ok): sub-02/1stlvl_glm.feat/mc/prefiltered_func_data_mcf.mat/MAT_0093 (file)
add(ok): sub-02/1stlvl_glm.feat/mc/prefiltered_func_data_mcf.mat/MAT_0094 (file)
add(ok): sub-02/1stlvl_glm.feat/mc/prefiltered_func_data_mcf.mat/MAT_0095 (file)
add(ok): sub-02/1stlvl_glm.feat/mc/prefiltered_func_data_mcf.mat/MAT_0096 (file)
add(ok): sub-02/1stlvl_glm.feat/mc/prefiltered_func_data_mcf.mat/MAT_0097 (file)
add(ok): sub-02/1stlvl_glm.feat/mc/prefiltered_func_data_mcf.mat/MAT_0098 (file)
add(ok): sub-02/1stlvl_glm.feat/mc/prefiltered_func_data_mcf.mat/MAT_0099 (file)

(continues on next page)

21.3. Step-by-Step 334

The DataLad Handbook, Release 0.12.0+519.g04985082

(continued from previous page)

add(ok): sub-02/1stlvl_glm.feat/mc/prefiltered_func_data_mcf.mat/MAT_0100 (file)
add(ok): sub-02/1stlvl_glm.feat/mc/prefiltered_func_data_mcf.mat/MAT_0101 (file)
add(ok): sub-02/1stlvl_glm.feat/mc/prefiltered_func_data_mcf.mat/MAT_0102 (file)
add(ok): sub-02/1stlvl_glm.feat/mc/prefiltered_func_data_mcf.mat/MAT_0103 (file)
add(ok): sub-02/1stlvl_glm.feat/mc/prefiltered_func_data_mcf.mat/MAT_0104 (file)
add(ok): sub-02/1stlvl_glm.feat/mc/prefiltered_func_data_mcf.mat/MAT_0105 (file)
add(ok): sub-02/1stlvl_glm.feat/mc/prefiltered_func_data_mcf.mat/MAT_0106 (file)
add(ok): sub-02/1stlvl_glm.feat/mc/prefiltered_func_data_mcf.mat/MAT_0107 (file)
add(ok): sub-02/1stlvl_glm.feat/mc/prefiltered_func_data_mcf.mat/MAT_0108 (file)
add(ok): sub-02/1stlvl_glm.feat/mc/prefiltered_func_data_mcf.mat/MAT_0109 (file)
add(ok): sub-02/1stlvl_glm.feat/mc/prefiltered_func_data_mcf.mat/MAT_0110 (file)
add(ok): sub-02/1stlvl_glm.feat/mc/prefiltered_func_data_mcf.mat/MAT_0111 (file)
add(ok): sub-02/1stlvl_glm.feat/mc/prefiltered_func_data_mcf.mat/MAT_0112 (file)
add(ok): sub-02/1stlvl_glm.feat/mc/prefiltered_func_data_mcf.mat/MAT_0113 (file)
add(ok): sub-02/1stlvl_glm.feat/mc/prefiltered_func_data_mcf.mat/MAT_0114 (file)
add(ok): sub-02/1stlvl_glm.feat/mc/prefiltered_func_data_mcf.mat/MAT_0115 (file)
add(ok): sub-02/1stlvl_glm.feat/mc/prefiltered_func_data_mcf.mat/MAT_0116 (file)
add(ok): sub-02/1stlvl_glm.feat/mc/prefiltered_func_data_mcf.mat/MAT_0117 (file)
add(ok): sub-02/1stlvl_glm.feat/mc/prefiltered_func_data_mcf.mat/MAT_0118 (file)
add(ok): sub-02/1stlvl_glm.feat/mc/prefiltered_func_data_mcf.mat/MAT_0119 (file)
add(ok): sub-02/1stlvl_glm.feat/mc/prefiltered_func_data_mcf.mat/MAT_0120 (file)
add(ok): sub-02/1stlvl_glm.feat/mc/prefiltered_func_data_mcf.mat/MAT_0121 (file)
add(ok): sub-02/1stlvl_glm.feat/mc/prefiltered_func_data_mcf.mat/MAT_0122 (file)
add(ok): sub-02/1stlvl_glm.feat/mc/prefiltered_func_data_mcf.mat/MAT_0123 (file)
add(ok): sub-02/1stlvl_glm.feat/mc/prefiltered_func_data_mcf.mat/MAT_0124 (file)
add(ok): sub-02/1stlvl_glm.feat/mc/prefiltered_func_data_mcf.mat/MAT_0125 (file)
add(ok): sub-02/1stlvl_glm.feat/mc/prefiltered_func_data_mcf.mat/MAT_0126 (file)
add(ok): sub-02/1stlvl_glm.feat/mc/prefiltered_func_data_mcf.mat/MAT_0127 (file)
add(ok): sub-02/1stlvl_glm.feat/mc/prefiltered_func_data_mcf.mat/MAT_0128 (file)
add(ok): sub-02/1stlvl_glm.feat/mc/prefiltered_func_data_mcf.mat/MAT_0129 (file)
add(ok): sub-02/1stlvl_glm.feat/mc/prefiltered_func_data_mcf.mat/MAT_0130 (file)
add(ok): sub-02/1stlvl_glm.feat/mc/prefiltered_func_data_mcf.mat/MAT_0131 (file)
add(ok): sub-02/1stlvl_glm.feat/mc/prefiltered_func_data_mcf.mat/MAT_0132 (file)
add(ok): sub-02/1stlvl_glm.feat/mc/prefiltered_func_data_mcf.mat/MAT_0133 (file)
add(ok): sub-02/1stlvl_glm.feat/mc/prefiltered_func_data_mcf.mat/MAT_0134 (file)
add(ok): sub-02/1stlvl_glm.feat/mc/prefiltered_func_data_mcf.mat/MAT_0135 (file)
add(ok): sub-02/1stlvl_glm.feat/mc/prefiltered_func_data_mcf.mat/MAT_0136 (file)
add(ok): sub-02/1stlvl_glm.feat/mc/prefiltered_func_data_mcf.mat/MAT_0137 (file)
add(ok): sub-02/1stlvl_glm.feat/mc/prefiltered_func_data_mcf.mat/MAT_0138 (file)
add(ok): sub-02/1stlvl_glm.feat/mc/prefiltered_func_data_mcf.mat/MAT_0139 (file)
add(ok): sub-02/1stlvl_glm.feat/mc/prefiltered_func_data_mcf.mat/MAT_0140 (file)
add(ok): sub-02/1stlvl_glm.feat/mc/prefiltered_func_data_mcf.mat/MAT_0141 (file)
add(ok): sub-02/1stlvl_glm.feat/mc/prefiltered_func_data_mcf.mat/MAT_0142 (file)
add(ok): sub-02/1stlvl_glm.feat/mc/prefiltered_func_data_mcf.mat/MAT_0143 (file)
add(ok): sub-02/1stlvl_glm.feat/mc/prefiltered_func_data_mcf.mat/MAT_0144 (file)
add(ok): sub-02/1stlvl_glm.feat/mc/prefiltered_func_data_mcf.mat/MAT_0145 (file)
add(ok): sub-02/1stlvl_glm.feat/mc/prefiltered_func_data_mcf.mat/MAT_0146 (file)
add(ok): sub-02/1stlvl_glm.feat/mc/prefiltered_func_data_mcf.mat/MAT_0147 (file)
add(ok): sub-02/1stlvl_glm.feat/mc/prefiltered_func_data_mcf.mat/MAT_0148 (file)
add(ok): sub-02/1stlvl_glm.feat/mc/prefiltered_func_data_mcf.mat/MAT_0149 (file)
add(ok): sub-02/1stlvl_glm.feat/mc/prefiltered_func_data_mcf.mat/MAT_0150 (file)
add(ok): sub-02/1stlvl_glm.feat/mc/prefiltered_func_data_mcf.mat/MAT_0151 (file)
add(ok): sub-02/1stlvl_glm.feat/mc/prefiltered_func_data_mcf.mat/MAT_0152 (file)
add(ok): sub-02/1stlvl_glm.feat/mc/prefiltered_func_data_mcf.mat/MAT_0153 (file)
add(ok): sub-02/1stlvl_glm.feat/mc/prefiltered_func_data_mcf.mat/MAT_0154 (file)
add(ok): sub-02/1stlvl_glm.feat/mc/prefiltered_func_data_mcf.mat/MAT_0155 (file)

(continues on next page)

21.3. Step-by-Step 335

The DataLad Handbook, Release 0.12.0+519.g04985082

(continued from previous page)

add(ok): sub-02/1stlvl_glm.feat/mc/prefiltered_func_data_mcf.par (file)
add(ok): sub-02/1stlvl_glm.feat/mc/prefiltered_func_data_mcf_abs.rms (file)
add(ok): sub-02/1stlvl_glm.feat/mc/prefiltered_func_data_mcf_abs_mean.rms (file)
add(ok): sub-02/1stlvl_glm.feat/mc/prefiltered_func_data_mcf_final.par (file)
add(ok): sub-02/1stlvl_glm.feat/mc/prefiltered_func_data_mcf_rel.rms (file)
add(ok): sub-02/1stlvl_glm.feat/mc/prefiltered_func_data_mcf_rel_mean.rms (file)
add(ok): sub-02/1stlvl_glm.feat/mc/rot.png (file)
add(ok): sub-02/1stlvl_glm.feat/mc/trans.png (file)
add(ok): sub-02/1stlvl_glm.feat/mean_func.nii.gz (file)
add(ok): sub-02/1stlvl_glm.feat/rendered_thresh_zstat1.nii.gz (file)
add(ok): sub-02/1stlvl_glm.feat/rendered_thresh_zstat1.png (file)
add(ok): sub-02/1stlvl_glm.feat/report.html (file)
add(ok): sub-02/1stlvl_glm.feat/report_log.html (file)
add(ok): sub-02/1stlvl_glm.feat/report_poststats.html (file)
add(ok): sub-02/1stlvl_glm.feat/report_prestats.html (file)
add(ok): sub-02/1stlvl_glm.feat/report_reg.html (file)
add(ok): sub-02/1stlvl_glm.feat/report_stats.html (file)
add(ok): sub-02/1stlvl_glm.feat/stats/cope1.nii.gz (file)
add(ok): sub-02/1stlvl_glm.feat/stats/dof (file)
add(ok): sub-02/1stlvl_glm.feat/stats/logfile (file)
add(ok): sub-02/1stlvl_glm.feat/stats/pe1.nii.gz (file)
add(ok): sub-02/1stlvl_glm.feat/stats/pe10.nii.gz (file)
add(ok): sub-02/1stlvl_glm.feat/stats/pe11.nii.gz (file)
add(ok): sub-02/1stlvl_glm.feat/stats/pe12.nii.gz (file)
add(ok): sub-02/1stlvl_glm.feat/stats/pe13.nii.gz (file)
add(ok): sub-02/1stlvl_glm.feat/stats/pe14.nii.gz (file)
add(ok): sub-02/1stlvl_glm.feat/stats/pe15.nii.gz (file)
add(ok): sub-02/1stlvl_glm.feat/stats/pe16.nii.gz (file)
add(ok): sub-02/1stlvl_glm.feat/stats/pe17.nii.gz (file)
add(ok): sub-02/1stlvl_glm.feat/stats/pe18.nii.gz (file)
add(ok): sub-02/1stlvl_glm.feat/stats/pe2.nii.gz (file)
add(ok): sub-02/1stlvl_glm.feat/stats/pe3.nii.gz (file)
add(ok): sub-02/1stlvl_glm.feat/stats/pe4.nii.gz (file)
add(ok): sub-02/1stlvl_glm.feat/stats/pe5.nii.gz (file)
add(ok): sub-02/1stlvl_glm.feat/stats/pe6.nii.gz (file)
add(ok): sub-02/1stlvl_glm.feat/stats/pe7.nii.gz (file)
add(ok): sub-02/1stlvl_glm.feat/stats/pe8.nii.gz (file)
add(ok): sub-02/1stlvl_glm.feat/stats/pe9.nii.gz (file)
add(ok): sub-02/1stlvl_glm.feat/stats/res4d.nii.gz (file)
add(ok): sub-02/1stlvl_glm.feat/stats/sigmasquareds.nii.gz (file)
add(ok): sub-02/1stlvl_glm.feat/stats/smoothness (file)
add(ok): sub-02/1stlvl_glm.feat/stats/threshac1.nii.gz (file)
add(ok): sub-02/1stlvl_glm.feat/stats/tstat1.nii.gz (file)
add(ok): sub-02/1stlvl_glm.feat/stats/varcope1.nii.gz (file)
add(ok): sub-02/1stlvl_glm.feat/stats/zstat1.nii.gz (file)
add(ok): sub-02/1stlvl_glm.feat/thresh_zstat1.nii.gz (file)
add(ok): sub-02/1stlvl_glm.feat/thresh_zstat1.vol (file)
add(ok): sub-02/1stlvl_glm.feat/tsplot/ps_tsplot_zstat1_ev1.png (file)
add(ok): sub-02/1stlvl_glm.feat/tsplot/ps_tsplot_zstat1_ev1.txt (file)
add(ok): sub-02/1stlvl_glm.feat/tsplot/ps_tsplot_zstat1_ev10.png (file)
add(ok): sub-02/1stlvl_glm.feat/tsplot/ps_tsplot_zstat1_ev10.txt (file)
add(ok): sub-02/1stlvl_glm.feat/tsplot/ps_tsplot_zstat1_ev10p.png (file)
add(ok): sub-02/1stlvl_glm.feat/tsplot/ps_tsplot_zstat1_ev11.png (file)
add(ok): sub-02/1stlvl_glm.feat/tsplot/ps_tsplot_zstat1_ev11.txt (file)
add(ok): sub-02/1stlvl_glm.feat/tsplot/ps_tsplot_zstat1_ev11p.png (file)
add(ok): sub-02/1stlvl_glm.feat/tsplot/ps_tsplot_zstat1_ev12.png (file)

(continues on next page)

21.3. Step-by-Step 336

The DataLad Handbook, Release 0.12.0+519.g04985082

(continued from previous page)

add(ok): sub-02/1stlvl_glm.feat/tsplot/ps_tsplot_zstat1_ev12.txt (file)
add(ok): sub-02/1stlvl_glm.feat/tsplot/ps_tsplot_zstat1_ev12p.png (file)
add(ok): sub-02/1stlvl_glm.feat/tsplot/ps_tsplot_zstat1_ev1p.png (file)
add(ok): sub-02/1stlvl_glm.feat/tsplot/ps_tsplot_zstat1_ev2.png (file)
add(ok): sub-02/1stlvl_glm.feat/tsplot/ps_tsplot_zstat1_ev2.txt (file)
add(ok): sub-02/1stlvl_glm.feat/tsplot/ps_tsplot_zstat1_ev2p.png (file)
add(ok): sub-02/1stlvl_glm.feat/tsplot/ps_tsplot_zstat1_ev3.png (file)
add(ok): sub-02/1stlvl_glm.feat/tsplot/ps_tsplot_zstat1_ev3.txt (file)
add(ok): sub-02/1stlvl_glm.feat/tsplot/ps_tsplot_zstat1_ev3p.png (file)
add(ok): sub-02/1stlvl_glm.feat/tsplot/ps_tsplot_zstat1_ev4.png (file)
add(ok): sub-02/1stlvl_glm.feat/tsplot/ps_tsplot_zstat1_ev4.txt (file)
add(ok): sub-02/1stlvl_glm.feat/tsplot/ps_tsplot_zstat1_ev4p.png (file)
add(ok): sub-02/1stlvl_glm.feat/tsplot/ps_tsplot_zstat1_ev5.png (file)
add(ok): sub-02/1stlvl_glm.feat/tsplot/ps_tsplot_zstat1_ev5.txt (file)
add(ok): sub-02/1stlvl_glm.feat/tsplot/ps_tsplot_zstat1_ev5p.png (file)
add(ok): sub-02/1stlvl_glm.feat/tsplot/ps_tsplot_zstat1_ev6.png (file)
add(ok): sub-02/1stlvl_glm.feat/tsplot/ps_tsplot_zstat1_ev6.txt (file)
add(ok): sub-02/1stlvl_glm.feat/tsplot/ps_tsplot_zstat1_ev6p.png (file)
add(ok): sub-02/1stlvl_glm.feat/tsplot/ps_tsplot_zstat1_ev7.png (file)
add(ok): sub-02/1stlvl_glm.feat/tsplot/ps_tsplot_zstat1_ev7.txt (file)
add(ok): sub-02/1stlvl_glm.feat/tsplot/ps_tsplot_zstat1_ev7p.png (file)
add(ok): sub-02/1stlvl_glm.feat/tsplot/ps_tsplot_zstat1_ev8.png (file)
add(ok): sub-02/1stlvl_glm.feat/tsplot/ps_tsplot_zstat1_ev8.txt (file)
add(ok): sub-02/1stlvl_glm.feat/tsplot/ps_tsplot_zstat1_ev8p.png (file)
add(ok): sub-02/1stlvl_glm.feat/tsplot/ps_tsplot_zstat1_ev9.png (file)
add(ok): sub-02/1stlvl_glm.feat/tsplot/ps_tsplot_zstat1_ev9.txt (file)
add(ok): sub-02/1stlvl_glm.feat/tsplot/ps_tsplot_zstat1_ev9p.png (file)
add(ok): sub-02/1stlvl_glm.feat/tsplot/ps_tsplotc_zstat1_ev1.png (file)
add(ok): sub-02/1stlvl_glm.feat/tsplot/ps_tsplotc_zstat1_ev1.txt (file)
add(ok): sub-02/1stlvl_glm.feat/tsplot/ps_tsplotc_zstat1_ev10.png (file)
add(ok): sub-02/1stlvl_glm.feat/tsplot/ps_tsplotc_zstat1_ev10.txt (file)
add(ok): sub-02/1stlvl_glm.feat/tsplot/ps_tsplotc_zstat1_ev10p.png (file)
add(ok): sub-02/1stlvl_glm.feat/tsplot/ps_tsplotc_zstat1_ev11.png (file)
add(ok): sub-02/1stlvl_glm.feat/tsplot/ps_tsplotc_zstat1_ev11.txt (file)
add(ok): sub-02/1stlvl_glm.feat/tsplot/ps_tsplotc_zstat1_ev11p.png (file)
add(ok): sub-02/1stlvl_glm.feat/tsplot/ps_tsplotc_zstat1_ev12.png (file)
add(ok): sub-02/1stlvl_glm.feat/tsplot/ps_tsplotc_zstat1_ev12.txt (file)
add(ok): sub-02/1stlvl_glm.feat/tsplot/ps_tsplotc_zstat1_ev12p.png (file)
add(ok): sub-02/1stlvl_glm.feat/tsplot/ps_tsplotc_zstat1_ev1p.png (file)
add(ok): sub-02/1stlvl_glm.feat/tsplot/ps_tsplotc_zstat1_ev2.png (file)
add(ok): sub-02/1stlvl_glm.feat/tsplot/ps_tsplotc_zstat1_ev2.txt (file)
add(ok): sub-02/1stlvl_glm.feat/tsplot/ps_tsplotc_zstat1_ev2p.png (file)
add(ok): sub-02/1stlvl_glm.feat/tsplot/ps_tsplotc_zstat1_ev3.png (file)
add(ok): sub-02/1stlvl_glm.feat/tsplot/ps_tsplotc_zstat1_ev3.txt (file)
add(ok): sub-02/1stlvl_glm.feat/tsplot/ps_tsplotc_zstat1_ev3p.png (file)
add(ok): sub-02/1stlvl_glm.feat/tsplot/ps_tsplotc_zstat1_ev4.png (file)
add(ok): sub-02/1stlvl_glm.feat/tsplot/ps_tsplotc_zstat1_ev4.txt (file)
add(ok): sub-02/1stlvl_glm.feat/tsplot/ps_tsplotc_zstat1_ev4p.png (file)
add(ok): sub-02/1stlvl_glm.feat/tsplot/ps_tsplotc_zstat1_ev5.png (file)
add(ok): sub-02/1stlvl_glm.feat/tsplot/ps_tsplotc_zstat1_ev5.txt (file)
add(ok): sub-02/1stlvl_glm.feat/tsplot/ps_tsplotc_zstat1_ev5p.png (file)
add(ok): sub-02/1stlvl_glm.feat/tsplot/ps_tsplotc_zstat1_ev6.png (file)
add(ok): sub-02/1stlvl_glm.feat/tsplot/ps_tsplotc_zstat1_ev6.txt (file)
add(ok): sub-02/1stlvl_glm.feat/tsplot/ps_tsplotc_zstat1_ev6p.png (file)
add(ok): sub-02/1stlvl_glm.feat/tsplot/ps_tsplotc_zstat1_ev7.png (file)
add(ok): sub-02/1stlvl_glm.feat/tsplot/ps_tsplotc_zstat1_ev7.txt (file)

(continues on next page)

21.3. Step-by-Step 337

The DataLad Handbook, Release 0.12.0+519.g04985082

(continued from previous page)

add(ok): sub-02/1stlvl_glm.feat/tsplot/ps_tsplotc_zstat1_ev7p.png (file)
add(ok): sub-02/1stlvl_glm.feat/tsplot/ps_tsplotc_zstat1_ev8.png (file)
add(ok): sub-02/1stlvl_glm.feat/tsplot/ps_tsplotc_zstat1_ev8.txt (file)
add(ok): sub-02/1stlvl_glm.feat/tsplot/ps_tsplotc_zstat1_ev8p.png (file)
add(ok): sub-02/1stlvl_glm.feat/tsplot/ps_tsplotc_zstat1_ev9.png (file)
add(ok): sub-02/1stlvl_glm.feat/tsplot/ps_tsplotc_zstat1_ev9.txt (file)
add(ok): sub-02/1stlvl_glm.feat/tsplot/ps_tsplotc_zstat1_ev9p.png (file)
add(ok): sub-02/1stlvl_glm.feat/tsplot/tsplot_index (file)
add(ok): sub-02/1stlvl_glm.feat/tsplot/tsplot_index.html (file)
add(ok): sub-02/1stlvl_glm.feat/tsplot/tsplot_zstat1.html (file)
add(ok): sub-02/1stlvl_glm.feat/tsplot/tsplot_zstat1.png (file)
add(ok): sub-02/1stlvl_glm.feat/tsplot/tsplot_zstat1.txt (file)
add(ok): sub-02/1stlvl_glm.feat/tsplot/tsplot_zstat1p.png (file)
add(ok): sub-02/1stlvl_glm.feat/tsplot/tsplotc_zstat1.png (file)
add(ok): sub-02/1stlvl_glm.feat/tsplot/tsplotc_zstat1.txt (file)
add(ok): sub-02/1stlvl_glm.feat/tsplot/tsplotc_zstat1p.png (file)
save(ok): . (dataset)
action summary:
add (ok: 345)
get (notneeded: 4, ok: 1)
save (notneeded: 1, ok: 2)

check that we are now on the new `verify` branch
$ git branch
git-annex
master

* verify

compare which files have changes with respect to the original results
$ git diff master --stat
sub-02/1stlvl_glm.feat/logs/feat0 | 2 +-
sub-02/1stlvl_glm.feat/logs/{feat0_init.e294223 => feat0_init.e299367} | 0
sub-02/1stlvl_glm.feat/logs/{feat0_init.o294223 => feat0_init.o299367} | 0
sub-02/1stlvl_glm.feat/logs/feat1 | 2 +-
sub-02/1stlvl_glm.feat/logs/{feat2_pre.e294303 => feat2_pre.e299450} | 0
sub-02/1stlvl_glm.feat/logs/{feat2_pre.o294303 => feat2_pre.o299450} | 0
sub-02/1stlvl_glm.feat/logs/{feat3_film.e294757 => feat3_film.e299957} | 0
sub-02/1stlvl_glm.feat/logs/{feat3_film.o294757 => feat3_film.o299957} | 0
sub-02/1stlvl_glm.feat/logs/{feat4_post.e295374 => feat4_post.e300332} | 0
sub-02/1stlvl_glm.feat/logs/{feat4_post.o295374 => feat4_post.o300332} | 0
sub-02/1stlvl_glm.feat/logs/{feat5_stop.e296006 => feat5_stop.e300964} | 0
sub-02/1stlvl_glm.feat/logs/{feat5_stop.o296006 => feat5_stop.o300964} | 0
sub-02/1stlvl_glm.feat/report.html | 2 +-
sub-02/1stlvl_glm.feat/report_log.html | 2 +-
14 files changed, 4 insertions(+), 4 deletions(-)

switch back to the master branch and remove the `verify` branch
$ git checkout master
$ git branch -D verify
Switched to branch 'master'
Deleted branch verify (was eeac9a0).

The outcome of this usecase can be found as a dataset on Github here369.

369 https://github.com/myyoda/demo-dataset-glmanalysis

21.3. Step-by-Step 338

https://github.com/myyoda/demo-dataset-glmanalysis

CHAPTER

TWENTYTWO

SCALING UP: MANAGING 80TB AND 15 MILLION FILES FROM THE
HCP RELEASE

This usecase outlines how a large data collection can be version controlled and published in an
accessible manner with DataLad in a remote indexed archive (RIA) data store. Using the Human
Connectome Project372 (HCP) data as an example, it shows how large-scale datasets can be
managed with the help of modular nesting, and how access to data that is contingent on usage
agreements and external service credentials is possible via DataLad without circumventing or
breaching the data providers terms:

1. The datalad addurls command is used to automatically aggregate files and information
about their sources from public AWS S3373 bucket storage into small-sized, modular Data-
Lad datasets.

2. Modular datasets are structured into a hierarchy of nested datasets, with a single HCP
superdataset at the top. This modularizes storage and access, and mitigates performance
problems that would arise in oversized standalone datasets, but maintains access to any
subdataset from the top-level dataset.

3. Individual datasets are stored in a remote indexed archive (RIA) store at
store.datalad.org374 under their dataset ID. This setup constitutes a flexible, domain-
agnostic, and scalable storage solution, while dataset configurations enable seamless au-
tomatic dataset retrieval from the store.

4. The top-level dataset is published to GitHub as a public access point for the full HCP
dataset. As the RIA store contains datasets with only file source information instead of
hosting data contents, a datalad get retrieves file contents from the original AWS S3
sources.

5. With DataLad’s authentication management, users will authenticate once – and are thus
required to accept the HCP projects terms to obtain valid credentials –, but subsequent
datalad get commands work swiftly without logging in.

6. The datalad copy-file can be used to subsample special-purpose datasets for faster ac-
cess.

372 http://www.humanconnectomeproject.org/
373 https://docs.aws.amazon.com/AmazonS3/latest/dev/Welcome.html
374 http://store.datalad.org/

339

http://www.humanconnectomeproject.org/
http://www.humanconnectomeproject.org/
https://docs.aws.amazon.com/AmazonS3/latest/dev/Welcome.html
http://store.datalad.org/

The DataLad Handbook, Release 0.12.0+519.g04985082

22.1 The Challenge

The Human Connectome Project375 aims to provide an unparalleled compilation of neural data
through a customized database. Its largest open access data collection is the WU-Minn HCP1200
Data376. It is made available via a public AWS S3 bucket and includes high-resolution 3T
magnetic resonance377 scans from young healthy adult twins and non-twin siblings (ages 22-35)
using four imaging modalities: structural images (T1w and T2w), resting-state fMRI (rfMRI)378,
task-fMRI (tfMRI), and high angular resolution diffusion imaging (dMRI)379. It further includes
behavioral and other individual subject measure data for all, and magnetoencephalography380

data and 7T MR data for a subset of subjects (twin pairs). In total, the data release encompasses
around 80TB of data in 15 million files, and is of immense value to the field of neuroscience.

Its large amount of data, however, also constitutes a data management challenge: Such amounts
of data are difficult to store, structure, access, and version control. Even tools such as DataLad,
and its foundations, Git and git-annex, will struggle or fail with datasets of this size or number
of files. Simply transforming the complete data release into a single DataLad dataset would at
best lead to severe performance issues, but quite likely result in software errors and crashes.
Moreover, access to the HCP data is contingent on consent to the data usage agreement381 of
the HCP project and requires valid AWS S3 credentials. Instead of hosting this data or providing
otherwise unrestrained access to it, an HCP DataLad dataset would need to enable data retrieval
from the original sources, conditional on the user agreeing to the HCP usage terms.

22.2 The DataLad Approach

Using the datalad addurls command, the HCP data release is aggregated into a large amount
(N ~= 4500) of datasets. A lean top-level dataset combines all datasets into a nested dataset
hierarchy that recreates the original HCP data release’s structure. The topmost dataset con-
tains one subdataset per subject with the subject’s release notes, and within each subject’s
subdataset, each additional available subdirectory is another subdataset. This preserves the
original structure of the HCP data release, but builds it up from sensible components that re-
semble standalone dataset units. As with any DataLad dataset, dataset nesting and operations
across dataset boundaries are seamless, and allow to easily retrieve data on a subject, modality,
or file level.

The highly modular structure has several advantages. For one, with barely any data in the
superdataset, the top-level dataset is very lean. It mainly consists of an impressive .gitmodules
file396 with almost 1200 registered (subject-level) subdatasets. The superdataset is published
to GitHub at github.com/datalad-datasets/human-connectome-project-openaccess382 to expose
this superdataset and allow anyone to install it with a single datalad clone command in a
few seconds. Secondly, the modularity from splitting the data release into several thousand
subdatasets has performance advantages. If Git or git-annex repositories exceed a certain size

375 http://www.humanconnectomeproject.org/
376 https://humanconnectome.org/study/hcp-young-adult/document/1200-subjects-data-release/
377 https://en.wikipedia.org/wiki/Magnetic_resonance_imaging
378 https://en.wikipedia.org/wiki/Resting_state_fMRI
379 https://en.wikipedia.org/wiki/Diffusion_MRI
380 https://en.wikipedia.org/wiki/Magnetoencephalography
381 http://www.humanconnectomeproject.org/wp-content/uploads/2010/01/HCP_Data_Agreement.pdf
396 If you want to read up on how DataLad stores information about registered subdatasets in .gitmodules, check-

out section More on DIY configurations (page 114).
382 https://github.com/datalad-datasets/human-connectome-project-openaccess

22.1. The Challenge 340

http://www.humanconnectomeproject.org/
https://humanconnectome.org/study/hcp-young-adult/document/1200-subjects-data-release/
https://humanconnectome.org/study/hcp-young-adult/document/1200-subjects-data-release/
https://en.wikipedia.org/wiki/Magnetic_resonance_imaging
https://en.wikipedia.org/wiki/Resting_state_fMRI
https://en.wikipedia.org/wiki/Diffusion_MRI
https://en.wikipedia.org/wiki/Magnetoencephalography
http://www.humanconnectomeproject.org/wp-content/uploads/2010/01/HCP_Data_Agreement.pdf
https://github.com/datalad-datasets/human-connectome-project-openaccess

The DataLad Handbook, Release 0.12.0+519.g04985082

(either in terms of file sizes or the number of files), performance can drop severely397. By
dividing the vast amount of data into many subdatasets, this can be prevented: Subdatasets
are small-sized units that are combined to the complete HCP dataset structure, and nesting
comes with no additional costs or difficulties, as DataLad can work smoothly across hierarchies
of subdatasets.

In order to simplify access to the data instead of providing data access that could circumvent
HCP license term agreements for users, DataLad does not host any HCP data. Instead, thanks to
datalad addurls, each data file knows its source (the public AWS S3 bucket of the HCP project),
and a datalad get will retrieve HCP data from this bucket. With this setup, anyone who wants
to obtain the data will still need to consent to data usage terms and retrieve AWS credentials
from the HCP project, but can afterwards obtain the data solely with DataLad commands from
the command line or in scripts. Only the first datalad get requires authentication with AWS
credentials provided by the HCP project: DataLad will prompt any user at the time of retrieval of
the first file content of the dataset. Afterwards, no further authentication is needed, unless the
credentials become invalid or need to be updated for other reasons. Thus, in order to retrieve
HCP data of up to single file level with DataLad, users only need to:

• datalad clone the superdataset from GitHub (github.com/datalad-datasets/human-
connectome-project-openaccess383)

• Create an account at http://db.humanconnectome.org to accept data use terms and obtain
AWS credentials

• Use datalad get [-n] [-r] PATH to retrieve file, directory, or subdataset contents on
demand. Authentication is necessary only once (at the time of the first datalad get).

The HCP data release, despite its large size, can thus be version controlled and easily dis-
tributed with DataLad. In order to speed up data retrieval, subdataset installation can be
parallelized, and the full HCP dataset can be subsampled into special-purpose datasets using
DataLad’s copy-file command (introduced with DataLad version 0.13.0)

22.3 Step-by-Step

Building and publishing a DataLad dataset with HCP data consists of several steps: 1) Creating
all necessary datasets, 2) publishing them to a RIA store, and 3) creating an access point to all
files in the HCP data release. The upcoming subsections detail each of these.

Dataset creation with datalad addurls

The datalad addurls command (datalad-addurls manual) allows you to create (and update)
potentially nested DataLad datasets from a list of download URLs that point to the HCP files in
the S3 buckets. By supplying subject specific .csv files that contain S3 download links, a subject
ID, a file name, and a version specification per file in the HCP dataset, as well as information on
where subdataset boundaries are, datalad addurls can download all subjects’ files and create
(nested) datasets to store them in. With the help of a few bash commands, this task can be
automated, and with the help of a job scheduler384, it can also be parallelized. As soon as files

397 Precise performance will always be dependent on the details of the repository, software setup, and hardware,
but to get a feeling for the possible performance issues in oversized datasets, imagine a mere git status or datalad
status command taking several minutes up to hours in a clean dataset.

383 https://github.com/datalad-datasets/human-connectome-project-openaccess
384 https://en.wikipedia.org/wiki/Job_scheduler

22.3. Step-by-Step 341

https://github.com/datalad-datasets/human-connectome-project-openaccess
https://github.com/datalad-datasets/human-connectome-project-openaccess
http://db.humanconnectome.org
https://en.wikipedia.org/wiki/Job_scheduler

The DataLad Handbook, Release 0.12.0+519.g04985082

are downloaded and saved to a datasets, their content can be dropped with datalad drop: The
origin of the file was successfully recorded, and a datalad get can now retrieve file contents
on demand. Thus, shortly after a complete download of the HCP project data, the datasets
in which it has been aggregated are small in size, and yet provide access to the HCP data for
anyone who has valid AWS S3 credentials.

At the end of this step, there is one nested dataset per subject in the HCP data release. If you
are interested in the details of this process, checkout the hidden section below.

Find out more

How exactly did the datasets came to be?

Note: All code and tables necessary to generate the HCP datasets can be found on
GitHub at github.com/TobiasKadelka/build_hcp385.

The datalad addurls command is capable of building all necessary nested subject
datasets automatically, it only needs an appropriate specification of its tasks. We’ll ap-
proach the function of datalad addurls and how exactly it was invoked to build the HCP
dataset by looking at the information it needs. Below are excerpts of the .csv table of
one subject (100206) that illustrate how addurls works:

Listing 1: Table header and some of the release note files

385 https://github.com/TobiasKadelka/build_hcp

"original_url","subject","filename","version"
"s3://hcp-openaccess/HCP_1200/100206/release-notes/Diffusion_unproc.txt","100206",
→˓"release-notes/Diffusion_unproc.txt","j9bm9Jvph3EzC0t9Jl51KVrq6NFuoznu"
"s3://hcp-openaccess/HCP_1200/100206/release-notes/ReleaseNotes.txt","100206",
→˓"release-notes/ReleaseNotes.txt","RgG.VC2mzp5xIc6ZGN6vB7iZ0mG7peXN"
"s3://hcp-openaccess/HCP_1200/100206/release-notes/Structural_preproc.txt","100206",
→˓"release-notes/Structural_preproc.txt","OeUYjysiX5zR7nRMixCimFa_6yQ3IKqf"
"s3://hcp-openaccess/HCP_1200/100206/release-notes/Structural_preproc_extended.txt",
→˓"100206","release-notes/Structural_preproc_extended.txt","cyP8G5_
→˓YX5F30gO9Yrpk8TADhkLltrNV"
"s3://hcp-openaccess/HCP_1200/100206/release-notes/Structural_unproc.txt","100206",
→˓"release-notes/Structural_unproc.txt","AyW6GmavML6I7LfbULVmtGIwRGpFmfPZ"

22.3. Step-by-Step 342

https://github.com/TobiasKadelka/build_hcp

The DataLad Handbook, Release 0.12.0+519.g04985082

Listing 2: Some files in the MNINonLinear directory

"s3://hcp-openaccess/HCP_1200/100206/MNINonLinear/100206.164k_fs_LR.wb.spec","100206
→˓","MNINonLinear//100206.164k_fs_LR.wb.spec","JSZJhZekZnMhv1sDWih.khEVUNZXMHTE"
"s3://hcp-openaccess/HCP_1200/100206/MNINonLinear/100206.ArealDistortion_FS.164k_fs_
→˓LR.dscalar.nii","100206","MNINonLinear//100206.ArealDistortion_FS.164k_fs_LR.
→˓dscalar.nii","sP4uw8R1oJyqCWeInSd9jmOBjfOCtN4D"
"s3://hcp-openaccess/HCP_1200/100206/MNINonLinear/100206.ArealDistortion_MSMAll.
→˓164k_fs_LR.dscalar.nii","100206","MNINonLinear//100206.ArealDistortion_MSMAll.
→˓164k_fs_LR.dscalar.nii","yD88c.HfsFwjyNXHQQv2SymGIsSYHQVZ"
"s3://hcp-openaccess/HCP_1200/100206/MNINonLinear/100206.ArealDistortion_MSMSulc.
→˓164k_fs_LR.dscalar.nii","100206","MNINonLinear

The .csv table contains one row per file, and includes the columns original_url,
subject, filename, and version. original_url is an s3 URL pointing to an individ-
ual file in the S3 bucket, subject is the subject’s ID (here: 100206), filename is the path
to the file within the dataset that will be build, and version is an S3 specific file version
identifier. The first table excerpt thus specifies a few files in the directory release-notes
in the dataset of subject 100206. For datalad addurls, the column headers serve as place-
holders for fields in each row. If this table excerpt is given to a datalad addurls call as
shown below, it will create a dataset and download and save the files in precise versions
in it:

$ datalad addurls -d <Subject-ID> <TABLE> '{original_url}?versionId={version}' '
→˓{filename}'

This command translates to “create a dataset with the name of the subject ID (-d
<Subject-ID>) and use the provided table (<TABLE>) to assemble the dataset contents.
Iterate through the table rows, and perform one download per row. Generate the
download URL from the original_url and version field of the table ({original_url}?
versionId={version}'), and save the downloaded file under the name specified in the
filename field ('{filename}')”.
If the file name contains a double slash (//), for example seen in the second table excerpt
in "MNINonLinear//..., this file will be created underneath a subdataset of the name in
front of the double slash. The rows in the second table thus translate to “save these files
into the subdataset MNINonLinear, and if this subdataset does not exist, create it”.
Thus, with a single subject’s table, a nested, subject specific dataset is built. Here is how
the directory hierarchy looks for this particular subject once datalad addurls worked
through its table:

100206
MNINonLinear <- subdataset
release-notes
T1w <- subdataset
unprocessed <- subdataset

This is all there is to assemble subject specific datasets. The interesting question is: How
can this be done as automated as possible?
How to create subject-specific tables
One crucial part of the process are the subject specific tables for datalad addurls. The
information on the file url, its name, and its version can be queried with the datalad ls
command (datalad-ls manual). It is a DataLad-specific version of the Unix ls command
and can be used to list summary information about s3 URLs and datasets. With this
command, the public S3 bucket can be queried and the command will output the relevant

22.3. Step-by-Step 343

The DataLad Handbook, Release 0.12.0+519.g04985082

information.

Note: The datalad ls command is a rather old command and less user-friendly than
other commands demonstrated in the handbook. One problem for automation is that
the command is made for interactive use, and it outputs information in a non-structured
fashion. In order to retrieve the relevant information, a custom Python script was used
to split its output and extract it. This script can be found in the GitHub repository as
code/create_subject_table.py386.

How to schedule datalad addurls commands for all tables
Once the subject specific tables exist, datalad addurls can start to aggregate the files
into datasets. To do it efficiently, this can be done in parallel by using a job scheduler. On
the computer cluster the datasets were aggregated, this was HTCondor387.
The jobs (per subject) performed by HTCondor consisted of

• a datalad addurls command to generate the (nested) dataset and retrieve content
once398:

datalad -l warning addurls -d "$outds" -c hcp_dataset "$subj_table" '
→˓{original_url}?versionId={version}' '{filename}'

• a subsequent datalad drop command to remove file contents as soon as they were
saved to the dataset to save disk space (this is possible since the S3 source of the
file is known, and content can be reobtained using get):

datalad drop -d "$outds" -r --nocheck

• a few (Git) commands to clean up well afterwards, as the system the HCP dataset
was downloaded to had a strict 5TB limit on disk usage.

Summary
Thus, in order to download the complete HCP project and aggregate it into nested subject
level datasets (on a system with much less disk space than the complete HCP project’s
size!), only two DataLad commands, one custom configuration, and some scripts to parse
terminal output into .csv tables and create subject-wise HTCondor jobs were necessary.
With all tables set up, the jobs ran over the Christmas break and finished before everyone
went back to work. Getting 15 million files into datasets? Check!

386 https://github.com/TobiasKadelka/build_hcp/blob/master/code/create_subject_table.py
387 https://research.cs.wisc.edu/htcondor/
398 Note that this command is more complex than the previously shown datalad addurls command. In

particular, it has an additional loglevel configuration for the main command, and creates the datasets with
an hcp_dataset configuration. The logging level was set (to warning) to help with post-execution diagnostics
in the HTCondors log files. The configuration can be found in code/cfg_hcp_dataset399 and enables a special
remote in the resulting dataset.

Using a Remote Indexed Archive Store for dataset hosting

All datasets were built on a scientific compute cluster. In this location, however, datasets would
only be accessible to users with an account on this system. Subsequently, therefore, every-
thing was published with datalad push to the publicly available store.datalad.org388, a remote
indexed archive (RIA) store.

A RIA store is a flexible and scalable data storage solution for DataLad datasets. While its
388 http://store.datalad.org/

22.3. Step-by-Step 344

https://github.com/TobiasKadelka/build_hcp/blob/master/code/create_subject_table.py
https://research.cs.wisc.edu/htcondor/
https://github.com/TobiasKadelka/build_hcp/blob/master/code/cfg_hcp_dataset.sh
http://store.datalad.org/

The DataLad Handbook, Release 0.12.0+519.g04985082

layout may look confusing if one were to take a look at it, a RIA store is nothing but a clever
storage solution, and users never consciously interact with the store to get the HCP datasets.
On the lowest level, store.datalad.org389 is a directory on a publicly accessible server that holds
a great number of datasets stored as bare git repositories. The only important aspect of it for this
usecase is that instead of by their names (e.g., 100206), datasets are stored and identified via
their dataset ID. The datalad clone command can understand this layout and install datasets
from a RIA store based on their ID.

Find out more

How would a datalad clone from a RIA store look like?
In order to get a dataset from a RIA store, datalad clone needs a RIA URL. It is build
from the following components:

• a ria+ identifier
• a path/url to the store in question. For store.datalad.org, this is http://store.

datalad.org, but it could also be an SSH url, such as ssh://juseless.inm7.de/
data/group/psyinf/dataset_store

• a pound sign (#)
• the dataset ID
• and optionally a version or branch specification (appended with a leading @)

Here is how a valid datalad clone command from the data store for one dataset would
look like:

datalad clone 'ria+http://store.datalad.org#d1ca308e-3d17-11ea-bf3b-f0d5bf7b5561'␣
→˓subj-01

But worry not! To get the HCP data, no-one will ever need to compose clone commands
to RIA stores apart from DataLad itself.

A RIA store is used, because – among other advantages – its layout makes the store flexible and
scalable. With datasets of sizes like the HCP project, especially scalability becomes an important
factor. If you are interested in finding out why, you can find more technical details on RIA stores,
their advantages, and even how to create and use one yourself in the section Remote Indexed
Archives for dataset storage and backup (page 257).

Making the datasets accessible

At this point, roughly 1200 nested datasets were created and published to a publicly accessible
RIA store. This modularized the HCP dataset and prevented performance issues that would
arise in oversized datasets. In order to make the complete dataset available and accessible from
one central point, the only thing missing is a single superdataset.

For this, a new dataset, human-connectome-project-openaccess, was created. It contains a
README file with short instructions how to use it, a text-based copy of the HCP projects data
usage agreement, – and each subject dataset as a subdataset. The .gitmodules file396 of this
superdataset thus is impressive. Here is an excerpt:

[submodule "100206"]
path = HCP1200/100206
url = ./HCP1200/100206
branch = master

(continues on next page)

389 http://store.datalad.org/

22.3. Step-by-Step 345

http://store.datalad.org/

The DataLad Handbook, Release 0.12.0+519.g04985082

(continued from previous page)

datalad-id = 346a3ae0-2c2e-11ea-a27d-002590496000
[submodule "100307"]

path = HCP1200/100307
url = ./HCP1200/100307
branch = master
datalad-id = a51b84fc-2c2d-11ea-9359-0025904abcb0

[submodule "100408"]
path = HCP1200/100408
url = ./HCP1200/100408
branch = master
datalad-id = d3fa72e4-2c2b-11ea-948f-0025904abcb0

[...]

For each subdataset (named after subject IDs), there is one entry (note that individual urls of
the subdatasets are pointless and not needed: As will be demonstrated shortly, DataLad resolves
each subdataset ID from the common store automatically). Thus, this superdatasets combines
all individual datasets to the original HCP dataset structure. This (and only this) superdataset
is published to a public GitHub repository that anyone can datalad clone400.

Data retrieval and interacting with the repository

Note: Using this dataset requires DataLad version 0.12.2 or higher. Upgrading an existing
DataLad installation is detailed in section Installation and configuration (page 9).

Procedurally, getting data from this dataset is almost as simple as with any other public DataLad
dataset: One needs to clone the repository and use datalad get [-n] [-r] PATH to retrieve
any file, directory, or subdataset (content). But because the data will be downloaded from the
HCP’s AWS S3 bucket, users will need to create an account at db.humanconnectome.org390 to
agree to the projects data usage terms and get credentials. When performing the first datalad
get for file contents, DataLad will prompt for these credentials interactively from the terminal.
Once supplied, all subsequent get commands will retrieve data right away.

Internally, DataLad cleverly manages the crucial aspects of data retrieval: Linking registered
subdatasets to the correct dataset in the RIA store. If you inspect the GitHub repository, you
will find that the subdatasets links in it will not resolve if you click on them, because none
of the subdatasets was published to GitHub401, but lie in the RIA store instead. Dataset or file
content retrieval will nevertheless work automatically with datalad get: Each .gitmodule entry
lists the subdatasets dataset ID. Based on a configuration of “subdataset-source-candidates” in
.datalad/config of the superdataset, the subdataset ID is assembled to a RIA URL that retrieves
the correct dataset from the store by get:

$ cat .datalad/config
[datalad "dataset"]

(continues on next page)

400 To re-read about publishing datasets to hosting services such as GitHub or GitLab, go back to Publishing the
dataset to GitHub (page 149).

390 http://db.humanconnectome.org
401 If you coded along in the Basics part of the book and published your dataset to Gin, you have experienced in

Subdataset publishing (page 184) how the links to unpublished subdatasets in a published dataset do not resolve in
the webinterface: Its path points to a URL that would resolve to lying underneath the superdataset, but there is not
published subdataset on the hosting platform!

22.3. Step-by-Step 346

http://db.humanconnectome.org

The DataLad Handbook, Release 0.12.0+519.g04985082

(continued from previous page)

id = 2e2a8a70-3eaa-11ea-a9a5-b4969157768c
[datalad "get"]

subdataset-source-candidate-origin = "ria+http://store.datalad.org#{id}"

This configuration allows get to flexibly generate RIA URLs from the base URL in the config file
and the dataset ID’s listed in .gitmodules. In the superdataset, it needed to be done “by hand”
via the git config command. Because the configuration should be shared together with the
dataset, the configuration needed to be set in .datalad/config402:

$ git config -f .datalad/config "datalad.get.subdataset-source-candidate-origin"
→˓"ria+http://store.datalad.org#{id}"

With this configuration, get will retrieve all subdatasets from the RIA store. Any subdataset
that is obtained from a RIA store in turn gets the very same configuration automatically into
.git/config. Thus, the configuration that makes seamless subdataset retrieval from RIA stores
possible is propagated throughout the dataset hierarchy. With this in place, anyone can clone
the top most dataset from GitHub, and – given they have valid credentials – get any file in the
HCP dataset hierarchy.

Parallel operations and subsampled datasets using datalad copy-file

At this point in time, the HCP dataset is single, published superdataset with ~4500 subdatasets
that are hosted in a remote indexed archive (RIA) store at store.datalad.org391. This makes the
HCP data accessible via DataLad and its download easier. One downside to gigantic nested
datasets like this one, though, is the time it takes to retrieve all of it. Some tricks can help to
mitigate this: Contents can either be retrieved in parallel, or, in the case of general need for
subsets of the dataset, subsampled datasets can be created with datalad copy-file.

If the complete HCP dataset is required, subdataset installation and data retrieval can be sped
up by parallelizing. The gists Parallelize subdataset processing (page 238) and Retrieve partial
content from a hierarchy of (uninstalled) datasets (page 241) can shed some light on how to this.

If there is a need for only a subset of files, it can be helpful to create or use special-
purpose datasets with a subset of all available files with the datalad copy-file command
(datalad-copy-file manual). Consider the following example: A large number of scientists
need to access the HCP dataset for structural connectivity analyses. Should they all clone the
complete superdataset, the installation of all subdatasets will take them around 90 minutes, if
parallelized (and a complete night if performed serially). The files that they need, however,
are only a handful of files per subject. In order to simplify their lives, a structural connectivity
subset392 can be created as a singular dataset and published for easy access. The following
findoutmore details how this is done.

Note: datalad copy-file requires DataLad version 0.13.0 or higher.

402 To re-read on configurations of datasets, go back to sections DIY configurations (page 108) and More on DIY
configurations (page 114).

391 http://store.datalad.org/
392 https://github.com/datalad-datasets/hcp-structural-connectivity

22.3. Step-by-Step 347

http://store.datalad.org/
https://github.com/datalad-datasets/hcp-structural-connectivity
https://github.com/datalad-datasets/hcp-structural-connectivity

The DataLad Handbook, Release 0.12.0+519.g04985082

Find out more

How to create subsampled datasets with datalad copy-file
For a structural connectivity subset of the HCP dataset, only eleven files per subject are
relevant:

- <sub>/T1w/Diffusion/nodif_brain_mask.nii.gz
- <sub>/T1w/Diffusion/bvecs
- <sub>/T1w/Diffusion/bvals
- <sub>/T1w/Diffusion/data.nii.gz
- <sub>/T1w/Diffusion/grad_dev.nii.gz
- <sub>/unprocessed/3T/T1w_MPR1/*_3T_BIAS_32CH.nii.gz
- <sub>/unprocessed/3T/T1w_MPR1/*_3T_AFI.nii.gz
- <sub>/unprocessed/3T/T1w_MPR1/*_3T_BIAS_BC.nii.gz
- <sub>/unprocessed/3T/T1w_MPR1/*_3T_FieldMap_Magnitude.nii.gz
- <sub>/unprocessed/3T/T1w_MPR1/*_3T_FieldMap_Phase.nii.gz
- <sub>/unprocessed/3T/T1w_MPR1/*_3T_T1w_MPR1.nii.gz

To access these files in the full HCP dataset, one would need to install all subject sub-
datasets and each subject’s T1w and unprocessed subdatasets. In order to spare re-
searchers the time and effort to install roughly 3500 subdatasets, a one-time effort can
create a subsampled, single dataset of those files using the datalad copy-file command.
The result of this can be found on GitHub at github.com/datalad-datasets/hcp-structural-
connectivity393.
datalad copy-file is able to copy files with their availability metadata into other
datasets. The content of the files does not need to be retrieved in order to do this.
Because the subset of relevant files is small, all structural connectivity related files can
be copied into a single dataset. This speeds up the installation time significantly, and
reduces the confusion that the concept of subdatasets can bring to DataLad novices. The
result is a dataset with a subset of files (following the original directory structure of the
HCP dataset), created reproducibly with complete provenance capture. Access to the files
inside of the subsampled dataset works via valid AWS credentials just as it does for the
full dataset. In order to understand how it was done for the dataset in question, the first
findoutmore below starts by explaining the basics of datalad copy-file. The second
then details the process that led to the finished subsampled dataset.

22.3. Step-by-Step 348

https://github.com/datalad-datasets/hcp-structural-connectivity
https://github.com/datalad-datasets/hcp-structural-connectivity

The DataLad Handbook, Release 0.12.0+519.g04985082

Find out more

The Basics of copy-file
This short demonstration gives an overview of the functionality of datalad
copy-file- Feel free to follow along by copy-pasting the commands into your ter-
minal. Let’s start by cloning a dataset to work with:

$ datalad clone git@github.com:datalad-datasets/human-connectome-project-
→˓openaccess.git hcp
[INFO] Cloning dataset to Dataset(/home/me/usecases/HCP/hcp)
[INFO] Attempting to clone from git@github.com:datalad-datasets/human-
→˓connectome-project-openaccess.git to /home/me/usecases/HCP/hcp
[INFO] Start enumerating objects
[INFO] Start counting objects
[INFO] Start compressing objects
[INFO] Start receiving objects
[INFO] Start resolving deltas
[INFO] Completed clone attempts for Dataset(/home/me/usecases/HCP/hcp)
install(ok): /home/me/usecases/HCP/hcp (dataset)

In order to use copy-file, we need to install a few subdatasets. We will install
9 subject subdatasets recursively. Note that we don’t retrieve any data. (The
output of this command is omitted – it is quite lengthy as 36 subdatasets are being
installed)

$ cd hcp
$ datalad get -n -r HCP1200/130*
[INFO] Cloning dataset to Dataset(/home/me/usecases/HCP/hcp/HCP1200/130013)

Afterwards, we can create a new dataset to copy any files into:

$ cd ..
$ datalad create dataset-to-copy-to
[INFO] Creating a new annex repo at /home/me/usecases/HCP/dataset-to-copy-to
create(ok): /home/me/usecases/HCP/dataset-to-copy-to (dataset)

With the prerequisites set up, we can start to copy files. The command datalad
copy-file works as follows: By providing a path to a file to be copied (which can
be annex’ed, not annex’ed, or not version-controlled at all) and either a second
path (the destination path), a target directory inside of a dataset, or a dataset
specification, datalad copy-file copies the file and all of its availability meta-
data into the specified dataset. Let’s copy a single file from the hcp dataset into
dataset-to-copy-to:

$ datalad copy-file hcp/HCP1200/130013/T1w/Diffusion/bvals -d dataset-to-copy-
→˓to
copy_file(ok): /home/me/usecases/HCP/hcp/HCP1200/130013/T1w/Diffusion/bvals [/
→˓home/me/usecases/HCP/dataset-to-copy-to/bvals]
save(ok): . (dataset)
action summary:
copy_file (ok: 1)
save (ok: 1)

Providing the -d/--dataset argument instead of a target directory or a destination
path leads to the file being saved in the new dataset. If a target directory or a
destination path is given for a file, the copied file will be not be saved:

$ datalad copy-file hcp/HCP1200/130013/T1w/Diffusion/bvecs -t dataset-to-copy-
→˓to
copy_file(ok): /home/me/usecases/HCP/hcp/HCP1200/130013/T1w/Diffusion/bvecs [/
→˓home/me/usecases/HCP/dataset-to-copy-to/bvecs]

Note how the file is added, but not saved afterwards:

$ cd dataset-to-copy-to
$ datalad status

added: bvecs (file)

Providing a second path as a destination path allows to copy the file under a dif-
ferent name, but it will also not save the new file in the destination dataset unless
-d/--dataset is specified as well:

$ datalad copy-file hcp/HCP1200/130013/T1w/Diffusion/bvecs dataset-to-copy-to/
→˓anothercopyofbvecs
copy_file(ok): /home/me/usecases/HCP/hcp/HCP1200/130013/T1w/Diffusion/bvecs [/
→˓home/me/usecases/HCP/dataset-to-copy-to/anothercopyofbvecs]

$ cd dataset-to-copy-to
$ datalad status

added: anothercopyofbvecs (file)
added: bvecs (file)

Let’s save those two unsaved files:

$ datalad save
save(ok): . (dataset)

With the -r/--recursive flag enabled, the command can copy complete subdirec-
tory (not subdataset!) hierarchies – Let’s copy a complete directory:

$ cd ..
$ datalad copy-file hcp/HCP1200/130114/T1w/Diffusion/* -r \
-d dataset-to-copy-to \
-t dataset-to-copy-to/130114/T1w/Diffusion

copy_file(ok): /home/me/usecases/HCP/hcp/HCP1200/130114/T1w/Diffusion/bvals [/
→˓home/me/usecases/HCP/dataset-to-copy-to/130114/T1w/Diffusion/bvals]
copy_file(ok): /home/me/usecases/HCP/hcp/HCP1200/130114/T1w/Diffusion/bvecs [/
→˓home/me/usecases/HCP/dataset-to-copy-to/130114/T1w/Diffusion/bvecs]
copy_file(ok): /home/me/usecases/HCP/hcp/HCP1200/130114/T1w/Diffusion/data.
→˓nii.gz [/home/me/usecases/HCP/dataset-to-copy-to/130114/T1w/Diffusion/data.
→˓nii.gz]
copy_file(ok): /home/me/usecases/HCP/hcp/HCP1200/130114/T1w/Diffusion/
→˓eddylogs/eddy_unwarped_images.eddy_parameters [/home/me/usecases/HCP/
→˓dataset-to-copy-to/130114/T1w/Diffusion/eddylogs/eddy_unwarped_images.eddy_
→˓parameters]
copy_file(ok): /home/me/usecases/HCP/hcp/HCP1200/130114/T1w/Diffusion/
→˓eddylogs/eddy_unwarped_images.eddy_outlier_n_stdev_map [/home/me/usecases/
→˓HCP/dataset-to-copy-to/130114/T1w/Diffusion/eddylogs/eddy_unwarped_images.
→˓eddy_outlier_n_stdev_map]
copy_file(ok): /home/me/usecases/HCP/hcp/HCP1200/130114/T1w/Diffusion/
→˓eddylogs/eddy_unwarped_images.eddy_outlier_map [/home/me/usecases/HCP/
→˓dataset-to-copy-to/130114/T1w/Diffusion/eddylogs/eddy_unwarped_images.eddy_
→˓outlier_map]
copy_file(ok): /home/me/usecases/HCP/hcp/HCP1200/130114/T1w/Diffusion/
→˓eddylogs/eddy_unwarped_images.eddy_outlier_n_sqr_stdev_map [/home/me/
→˓usecases/HCP/dataset-to-copy-to/130114/T1w/Diffusion/eddylogs/eddy_unwarped_
→˓images.eddy_outlier_n_sqr_stdev_map]
copy_file(ok): /home/me/usecases/HCP/hcp/HCP1200/130114/T1w/Diffusion/
→˓eddylogs/eddy_unwarped_images.eddy_post_eddy_shell_alignment_parameters [/
→˓home/me/usecases/HCP/dataset-to-copy-to/130114/T1w/Diffusion/eddylogs/eddy_
→˓unwarped_images.eddy_post_eddy_shell_alignment_parameters]
copy_file(ok): /home/me/usecases/HCP/hcp/HCP1200/130114/T1w/Diffusion/
→˓eddylogs/eddy_unwarped_images.eddy_outlier_report [/home/me/usecases/HCP/
→˓dataset-to-copy-to/130114/T1w/Diffusion/eddylogs/eddy_unwarped_images.eddy_
→˓outlier_report]
copy_file(ok): /home/me/usecases/HCP/hcp/HCP1200/130114/T1w/Diffusion/
→˓eddylogs/eddy_unwarped_images.eddy_movement_rms [/home/me/usecases/HCP/
→˓dataset-to-copy-to/130114/T1w/Diffusion/eddylogs/eddy_unwarped_images.eddy_
→˓movement_rms]
copy_file(ok): /home/me/usecases/HCP/hcp/HCP1200/130114/T1w/Diffusion/
→˓eddylogs/eddy_unwarped_images.eddy_restricted_movement_rms [/home/me/
→˓usecases/HCP/dataset-to-copy-to/130114/T1w/Diffusion/eddylogs/eddy_unwarped_
→˓images.eddy_restricted_movement_rms]
copy_file(ok): /home/me/usecases/HCP/hcp/HCP1200/130114/T1w/Diffusion/grad_
→˓dev.nii.gz [/home/me/usecases/HCP/dataset-to-copy-to/130114/T1w/Diffusion/
→˓grad_dev.nii.gz]
copy_file(ok): /home/me/usecases/HCP/hcp/HCP1200/130114/T1w/Diffusion/nodif_
→˓brain_mask.nii.gz [/home/me/usecases/HCP/dataset-to-copy-to/130114/T1w/
→˓Diffusion/nodif_brain_mask.nii.gz]
save(ok): . (dataset)
action summary:
copy_file (ok: 13)
save (ok: 1)

Here is how the dataset that we copied files into looks like at the moment:

$ tree dataset-to-copy-to
dataset-to-copy-to

130114
T1w

Diffusion
bvals -> ../../../.git/annex/objects/w8/VX/MD5E-s1344--

→˓4c9ca43cc986f388bcf716b4ba7321cc/MD5E-s1344--
→˓4c9ca43cc986f388bcf716b4ba7321cc

bvecs -> ../../../.git/annex/objects/61/80/MD5E-s9507--
→˓24793fb936e9e18419325af9b6152458/MD5E-s9507--
→˓24793fb936e9e18419325af9b6152458

data.nii.gz -> ../../../.git/annex/objects/K0/mJ/MD5E-
→˓s1468805393--f8077751ddc2802a853d1199ff762a00.nii.gz/MD5E-s1468805393--
→˓f8077751ddc2802a853d1199ff762a00.nii.gz

eddylogs
eddy_unwarped_images.eddy_movement_rms -> ../../../../.

→˓git/annex/objects/xX/GF/MD5E-s15991--287c3e06ece5b883a862f79c478b7b69/MD5E-
→˓s15991--287c3e06ece5b883a862f79c478b7b69

eddy_unwarped_images.eddy_outlier_map -> ../../../../.git/
→˓annex/objects/87/Xx/MD5E-s127363--919aed21eb51a77ca499cdc0a5560592/MD5E-
→˓s127363--919aed21eb51a77ca499cdc0a5560592

eddy_unwarped_images.eddy_outlier_n_sqr_stdev_map -> ../..
→˓/../../.git/annex/objects/PP/GX/MD5E-s523738--
→˓1bd90e1e7a86b35695d8039599835435/MD5E-s523738--
→˓1bd90e1e7a86b35695d8039599835435

eddy_unwarped_images.eddy_outlier_n_stdev_map -> ../../../
→˓../.git/annex/objects/qv/0F/MD5E-s520714--f995a46ec8ddaa5c7b33d71635844609/
→˓MD5E-s520714--f995a46ec8ddaa5c7b33d71635844609

eddy_unwarped_images.eddy_outlier_report -> ../../../../.
→˓git/annex/objects/Xq/xV/MD5E-s10177--2934d2c7b316b86cde6d6d938bb3da37/MD5E-
→˓s10177--2934d2c7b316b86cde6d6d938bb3da37

eddy_unwarped_images.eddy_parameters -> ../../../../.git/
→˓annex/objects/60/gf/MD5E-s141201--9a94e9fa805446ddb5ff8f76207fc1d2/MD5E-
→˓s141201--9a94e9fa805446ddb5ff8f76207fc1d2

eddy_unwarped_images.eddy_post_eddy_shell_alignment_
→˓parameters -> ../../../../.git/annex/objects/kJ/0W/MD5E-s2171--
→˓c2e0deca2a5e84d119002032d87cd762/MD5E-s2171--
→˓c2e0deca2a5e84d119002032d87cd762

eddy_unwarped_images.eddy_restricted_movement_rms -> ../..
→˓/../../.git/annex/objects/6K/X6/MD5E-s16134--
→˓5321d11df307f8452c8a5e92647ec73a/MD5E-s16134--
→˓5321d11df307f8452c8a5e92647ec73a

grad_dev.nii.gz -> ../../../.git/annex/objects/zz/51/MD5E-
→˓s46820650--13be960cd99e48e21e25635d1390c1c5.nii.gz/MD5E-s46820650--
→˓13be960cd99e48e21e25635d1390c1c5.nii.gz

nodif_brain_mask.nii.gz -> ../../../.git/annex/objects/0Q/Kk/
→˓MD5E-s67280--9042713a11d557df58307ba85d51285a.nii.gz/MD5E-s67280--
→˓9042713a11d557df58307ba85d51285a.nii.gz

anothercopyofbvecs -> .git/annex/objects/X0/Vg/MD5E-s9507--
→˓f4cf263de8c3fb11f739467bf15e80ec/MD5E-s9507--
→˓f4cf263de8c3fb11f739467bf15e80ec

bvals -> .git/annex/objects/Fj/Wg/MD5E-s1344--
→˓843688799692be0ab485fe746e0f9241/MD5E-s1344--
→˓843688799692be0ab485fe746e0f9241

bvecs -> .git/annex/objects/X0/Vg/MD5E-s9507--
→˓f4cf263de8c3fb11f739467bf15e80ec/MD5E-s9507--
→˓f4cf263de8c3fb11f739467bf15e80ec

4 directories, 16 files

Importantly, all of the copied files had yet unretrieved contents. The copy-file
process, however, also copied the files availability metadata to their new location.
Retrieving file contents works just as it would in the full HCP dataset via datalad
get (the authentication step is omitted in the output below):

$ cd dataset-to-copy-to
$ datalad get bvals anothercopyofbvecs 130114/T1w/Diffusion/eddylogs/eddy_
→˓unwarped_images.eddy_parameters
get(ok): anothercopyofbvecs (file) [from datalad...]
get(ok): 130114/T1w/Diffusion/eddylogs/eddy_unwarped_images.eddy_parameters␣
→˓(file) [from datalad...]
get(ok): bvals (file) [from datalad...]
action summary:
get (ok: 3)

What’s especially helpful for automation is that copy-file can take source and (op-
tionally) destination paths from a file or from stdin with the option --specs-from
<source>. In the case of specifications from a file, <source> is a path to this file.
In order to use stdin for specification, such as the output of a find command that
is piped into datalad copy-file with a Unix pipe (|)394, <source> needs to be a
dash (-). Below is examplary find command:

$ cd hcp
$ find HCP1200/130013/T1w/ -maxdepth 1 -name T1w*.nii.gz
HCP1200/130013/T1w/T1w_acpc_dc.nii.gz
HCP1200/130013/T1w/T1w_acpc_dc_restore_1.25.nii.gz
HCP1200/130013/T1w/T1wDividedByT2w.nii.gz
HCP1200/130013/T1w/T1wDividedByT2w_ribbon.nii.gz
HCP1200/130013/T1w/T1w_acpc_dc_restore_brain.nii.gz
HCP1200/130013/T1w/T1w_acpc_dc_restore.nii.gz

Here is how the outputted paths can be given as source paths to datalad
copy-file:

inside of hcp
$ find HCP1200/130013/T1w/ -maxdepth 1 -name T1w*.nii.gz \
| datalad copy-file -d ../dataset-to-copy-to --specs-from -

copy_file(ok): HCP1200/130013/T1w/T1w_acpc_dc.nii.gz [/home/me/usecases/HCP/
→˓dataset-to-copy-to/T1w_acpc_dc.nii.gz]
copy_file(ok): HCP1200/130013/T1w/T1w_acpc_dc_restore_1.25.nii.gz [/home/me/
→˓usecases/HCP/dataset-to-copy-to/T1w_acpc_dc_restore_1.25.nii.gz]
copy_file(ok): HCP1200/130013/T1w/T1wDividedByT2w.nii.gz [/home/me/usecases/
→˓HCP/dataset-to-copy-to/T1wDividedByT2w.nii.gz]
copy_file(ok): HCP1200/130013/T1w/T1wDividedByT2w_ribbon.nii.gz [/home/me/
→˓usecases/HCP/dataset-to-copy-to/T1wDividedByT2w_ribbon.nii.gz]
copy_file(ok): HCP1200/130013/T1w/T1w_acpc_dc_restore_brain.nii.gz [/home/me/
→˓usecases/HCP/dataset-to-copy-to/T1w_acpc_dc_restore_brain.nii.gz]
copy_file(ok): HCP1200/130013/T1w/T1w_acpc_dc_restore.nii.gz [/home/me/
→˓usecases/HCP/dataset-to-copy-to/T1w_acpc_dc_restore.nii.gz]
save(ok): . (dataset)
action summary:
copy_file (ok: 6)
save (ok: 1)

This copied all files into the root of dataset-to-copy-to:

$ ls ../dataset-to-copy-to
130114
anothercopyofbvecs
bvals
bvecs
T1w_acpc_dc.nii.gz
T1w_acpc_dc_restore_1.25.nii.gz
T1w_acpc_dc_restore_brain.nii.gz
T1w_acpc_dc_restore.nii.gz
T1wDividedByT2w.nii.gz
T1wDividedByT2w_ribbon.nii.gz

To preserve the directory structure, a target directory (-t ../
dataset-to-copy-to/130013/T1w/) or a destination path could be given.

Find out more

how to specify files with source and destination paths for –specs-from
To only specify source paths (i.e., paths to files or directories that should be
copied), simply create a file or a command like find that specifies those files
line-wise.
Specifying source and destination paths comes with a twist: Source and
destination paths need to go into the same line, but need to be separated by
a nullbyte395. One way this can be done is by using the stream editor sed.
Here is how to pipe source and destination paths into datalad copy-file:

$ find HCP1200/130518/T1w/ -maxdepth 1 -name T1w*.nii.gz \
| sed -e 's#\(HCP1200\)\(.*\)#\1\2\x0../dataset-to-copy-to\2#' \
| datalad copy-file -d ../dataset-to-clone-to -r --specs-from -

As always, the regular expressions used for sed are a bit hard to grasp upon
first sight. Here is what this command does:

• In general, sed’s s (substitute) command will take a string specified
between the first set of #’s (\(HCP1200\)\(.*\)) and replace it with
what is between the second and third # (\1\2\x0\2).

• The first part splits the paths find returns (such as HCP1200/130518/
T1w/T1w_acpc_dc.nii.gz) into two groups:

– The start of the path (HCP1200), and
– the remaining path (/130518/T1w/T1w_acpc_dc.nii.gz).

• The second part then prints the first and the second group (\1\2,
the source path), a nullbyte (\x0), and a relative path to the
destination dataset together with the second group only (../
dataset-to-copy-to\2, the destination path).

Here is how an output of find piped into sed looks like:
$ find HCP1200/130518/T1w -maxdepth 1 -name T1w*.nii.gz \
| sed -e 's#\(HCP1200\)\(.*\)#\1\2\x0../dataset-to-copy-to\2#'

HCP1200/130518/T1w/T1w_acpc_dc.nii.gz../dataset-to-copy-to/
→˓130518/T1w/T1w_acpc_dc.nii.gz
HCP1200/130518/T1w/T1w_acpc_dc_restore_1.25.nii.gz../dataset-to-
→˓copy-to/130518/T1w/T1w_acpc_dc_restore_1.25.nii.gz
HCP1200/130518/T1w/T1wDividedByT2w.nii.gz../dataset-to-copy-to/
→˓130518/T1w/T1wDividedByT2w.nii.gz
HCP1200/130518/T1w/T1wDividedByT2w_ribbon.nii.gz../dataset-to-
→˓copy-to/130518/T1w/T1wDividedByT2w_ribbon.nii.gz
HCP1200/130518/T1w/T1w_acpc_dc_restore_brain.nii.gz../dataset-to-
→˓copy-to/130518/T1w/T1w_acpc_dc_restore_brain.nii.gz
HCP1200/130518/T1w/T1w_acpc_dc_restore.nii.gz../dataset-to-copy-
→˓to/130518/T1w/T1w_acpc_dc_restore.nii.gz
HCP1200/130518/T1w/T1w_acpc_dc_restore_1.05.nii.gz../dataset-to-
→˓copy-to/130518/T1w/T1w_acpc_dc_restore_1.05.nii.gz

Note how the nullbyte is not visible to the naked eye in the output. To
visualize it, you could redirect this output into a file and open it with an
editor like vim. Let’s now see a copy-file from stdin in action:

$ find HCP1200/130518/T1w -maxdepth 1 -name T1w*.nii.gz \
| sed -e 's#\(HCP1200\)\(.*\)#\1\2\x0../dataset-to-copy-to\2#' \
| datalad copy-file -d ../dataset-to-copy-to -r --specs-from -
copy_file(ok): HCP1200/130518/T1w/T1w_acpc_dc.nii.gz [/home/me/
→˓usecases/HCP/dataset-to-copy-to/130518/T1w/T1w_acpc_dc.nii.gz]
copy_file(ok): HCP1200/130518/T1w/T1w_acpc_dc_restore_1.25.nii.gz [/
→˓home/me/usecases/HCP/dataset-to-copy-to/130518/T1w/T1w_acpc_dc_
→˓restore_1.25.nii.gz]
copy_file(ok): HCP1200/130518/T1w/T1wDividedByT2w.nii.gz [/home/me/
→˓usecases/HCP/dataset-to-copy-to/130518/T1w/T1wDividedByT2w.nii.gz]
copy_file(ok): HCP1200/130518/T1w/T1wDividedByT2w_ribbon.nii.gz [/home/
→˓me/usecases/HCP/dataset-to-copy-to/130518/T1w/T1wDividedByT2w_ribbon.
→˓nii.gz]
copy_file(ok): HCP1200/130518/T1w/T1w_acpc_dc_restore_brain.nii.gz [/
→˓home/me/usecases/HCP/dataset-to-copy-to/130518/T1w/T1w_acpc_dc_
→˓restore_brain.nii.gz]
copy_file(ok): HCP1200/130518/T1w/T1w_acpc_dc_restore.nii.gz [/home/me/
→˓usecases/HCP/dataset-to-copy-to/130518/T1w/T1w_acpc_dc_restore.nii.
→˓gz]
copy_file(ok): HCP1200/130518/T1w/T1w_acpc_dc_restore_1.05.nii.gz [/
→˓home/me/usecases/HCP/dataset-to-copy-to/130518/T1w/T1w_acpc_dc_
→˓restore_1.05.nii.gz]
save(ok): . (dataset)
action summary:
copy_file (ok: 7)
save (ok: 1)

395 https://en.wikipedia.org/wiki/Null_character

Now that you know the basics of datalad copy-file, the upcoming findoutmore
on how the actual dataset was created will be much easier to understand.

394 https://en.wikipedia.org/wiki/Pipeline_(Unix)

22.3. Step-by-Step 349

https://en.wikipedia.org/wiki/Pipeline_(Unix)
https://en.wikipedia.org/wiki/Null_character

The DataLad Handbook, Release 0.12.0+519.g04985082

Find out more

Copying reproducibly

Note: You should have read the previous findoutmore!

To capture the provenance of subsampled dataset creation, the copy-file com-
mand can be wrapped into a datalad run call. Here is a sketch on how it was
done:
Step 1: Create a dataset

$ datalad create hcp-structural-connectivity

Step 2: Install the full dataset as a subdataset

$ datalad clone -d . \
git@github.com:datalad-datasets/human-connectome-project-openaccess.git \
.hcp

Step 3: Install all subdataset of the full dataset with datalad get -n -r
Step 4: Inside of the new dataset, draft a find command that returns all desired
files, and a subsequent sed substitution command that returns a nullbyte separated
source and destination path. For this subsampled dataset, this one would work:

$ find .hcp/HCP1200 -maxdepth 5 -path '*/unprocessed/3T/T1w_MPR1/*' -name '*
→˓' \
-o -path '*/T1w/Diffusion/*' -name 'b*' \
-o -path '*/T1w/Diffusion/*' -name '*.nii.gz' \

| sed -e 's#\(\.hcp/HCP1200\)\(.*\)#\1\2\x00.\2#' \

Step 5: Pipe the results into datalad copy-file, and wrap everything into a
datalad run. Note that -d/--dataset is not specified for copy-file – this way,
datalad run will save everything in one go at the end:

$ datalad run \
-m "Assemble HCP dataset subset for structural connectivity data. \

Specifically, these are the files:

- T1w/Diffusion/nodif_brain_mask.nii.gz
- T1w/Diffusion/bvecs
- T1w/Diffusion/bvals
- T1w/Diffusion/data.nii.gz
- T1w/Diffusion/grad_dev.nii.gz
- unprocessed/3T/T1w_MPR1/*_3T_BIAS_32CH.nii.gz
- unprocessed/3T/T1w_MPR1/*_3T_AFI.nii.gz
- unprocessed/3T/T1w_MPR1/*_3T_BIAS_BC.nii.gz
- unprocessed/3T/T1w_MPR1/*_3T_FieldMap_Magnitude.nii.gz
- unprocessed/3T/T1w_MPR1/*_3T_FieldMap_Phase.nii.gz
- unprocessed/3T/T1w_MPR1/*_3T_T1w_MPR1.nii.gz

for each participant. The structure of the directory tree and file names
are kept identical to the full HCP dataset." \

" find .hcp/HCP1200 -maxdepth 5 -path '*/unprocessed/3T/T1w_MPR1/*' -
→˓name '*' \

-o -path '*/T1w/Diffusion/*' -name 'b*' \
-o -path '*/T1w/Diffusion/*' -name '*.nii.gz' \

| sed -e 's#\(\.hcp/HCP1200\)\(.*\)#\1\2\x00.\2#' \
| datalad copy-file -r --specs-from -"

Step 6: Publish the dataset to a RIA store and to GitHub or similar hosting services
to allow others to clone it easily and get fast access to a subset of files.

22.3. Step-by-Step 350

The DataLad Handbook, Release 0.12.0+519.g04985082

Afterwards, the slimmed down structural connectivity dataset can be installed completely
within seconds. Because of the reduced amount of files it contains, it is easier to trans-
form the data into BIDS format. Such a conversion can be done on a different branch of
the dataset. Because RIA stores allow cloning of datasets in specific versions (such as a
branch or tag as an identifier), a single command can clone a BIDS-ified, slimmed down
HCP dataset for structural connectivity analyses:

$ datalad clone ria+http://store.datalad.org#~hcp-structural-connectivity@bids

393 https://github.com/datalad-datasets/hcp-structural-connectivity

Summary

This usecase demonstrated how it is possible to version control and distribute datasets of sizes
that would otherwise be unmanageably large for version control systems. With the public HCP
dataset available as a DataLad dataset, data access is simplified, data analysis that use the HCP
data can link it (in precise versions) to their scripts and even share it, and the complete HCP
release can be stored at a fraction of its total size for on demand retrieval.

22.3. Step-by-Step 351

CHAPTER

TWENTYTHREE

BUILDING A SCALABLE DATA STORAGE FOR SCIENTIFIC
COMPUTING

Research can require enormous amounts of data. Such data needs to be accessed by multiple
people at the same time, and is used across a diverse range of computations or research ques-
tions. The size of the dataset, the need for simultaneous access and transformation of this data
by multiple people, and the subsequent storing of multiple copies or derivatives of the data con-
stitutes a challenge for computational clusters and requires state-of-the-art data management
solutions. This use case details a model implementation for a scalable data storage solution,
suitable to serve the computational and logistic demands of data science in big (scientific) in-
stitutions, while keeping workflows for users as simple as possible. It elaborates on

1. How to implement a scalable Remote Indexed Archive (RIA) store to flexibly store large
amounts of DataLad datasets, potentially remote to lower storage strains on computing
infrastructure,

2. How disk-space aware computing can be eased by DataLad based workflows and enforced
by infrastructural incentives and limitations, and

3. How to reduce technical complexities for users and encourage reproducible, version-
controlled, and scalable scientific workflows.

Note: This usecase is technical in nature and aimed at IT/data management personnel seeking
insights into the technical implementation and configuration of a RIA store or into its workflows.
In particular, it describes the RIA data storage and workflow implementation as done in INM-7,
research centre Juelich, Germany.

Note further: Building a RIA store requires DataLad version 0.13.0 or higher.

23.1 The Challenge

The data science institute XYZ consists of dozens of people: Principle investigators, PhD stu-
dents, general research staff, system administration, and IT support. It does research on im-
portant global issues, and prides itself with ground-breaking insights obtained from elaborate
and complex computations run on a large scientific computing cluster. The datasets used in the
institute are big both in size and number of files, and expensive to collect. Therefore, datasets
are used for various different research questions, by multiple researchers. Every member of the
institute has an account on an expensive and large compute cluster, and all of the data exists in
dedicated directories on this server. However, researchers struggle with the technical overhead
of data management and data science. In order to work on their research questions without

352

The DataLad Handbook, Release 0.12.0+519.g04985082

modifying original data, every user creates their own copies of the full data in their user ac-
count on the cluster – even if it contains many files that are not necessary for their analysis.
In addition, as version control is not a standard skill, they add all computed derivatives and
outputs, even old versions, out of fear of losing work that may become relevant again. Thus, an
excess of (unorganized) data copies and derivatives exists in addition to the already substan-
tial amount of original data. At the same time, the compute cluster is both the data storage
and the analysis playground for the institute. With data directories of several TB in size, and
computationally heavy analyses, the compute cluster is quickly brought to its knees: Insuffi-
cient memory and IOPS starvation make computations painstakingly slow, and hinder scientific
progress. Despite the elaborate and expensive cluster setup, exciting datasets can not be stored
or processed, as there just doesn’t seem to be enough disk space.

Therefore, the challenge is two-fold: On an infrastructural level, institute XYZ needs a scalable,
flexible, and maintainable data storage solution for their growing collection of large datasets.
On the level of human behavior, researchers not formerly trained in data management need to
apply and adhere to advanced data management principles.

23.2 The DataLad approach

The compute cluster is refurbished to a state-of-the-art data management system. For a scal-
able and flexible dataset storage, the data store is a Remote Indexed Archive (RIA) store – an
extendable, file-system based storage solution for DataLad datasets that aligns well with the re-
quirements of scientific computing (infrastructure). The RIA store is configured as a git-annex
ORA-remote (“optional remote archive”) special remote for access to annexed keys in the store
and so that full datasets can be (compressed) 7-zip archives. The latter is especially useful in
case of filesystem inode limitations, such as on HPC storage systems: Regardless of a dataset’s
number of files and size, (compressed) 7zipped datasets use only few inodes, but retain the
ability to query available files. Unlike traditional solutions, both because of the size of the large
amounts of data, and for more efficient use of compute power for calculations instead of data
storage, the RIA store is set up remote: Data is stored on a different machine than the one
the scientific analyses are computed on. While unconventional, it is convenient, and perfectly
possible with DataLad.

The infrastructural changes are accompanied by changes in the mindset and workflows of the
researchers that perform analyses on the cluster. By using a RIA store, the institute’s work
routines are adjusted around DataLad datasets. Simple configurations, distributed system-wide
with DataLad’s run-procedures, or basic data management principles improve the efficiency
and reproducibility of research projects: Analyses are set-up inside of DataLad datasets, and for
every analysis, an associated project is created under the namespace of the institute on the
institute’s GitLab instance automatically. This does not only lead to vastly simplified version
control workflows, but also to simplified access to projects and research logs for collaborators
and supervisors. Input data gets installed as subdatasets from the RIA store. This automatically
links analyses projects to data sets, and allows for fine-grained access of up to individual file
level. With only precisely needed data, analyses datasets are already much leaner than with
previous complete dataset copies, but as data can be re-obtained on-demand from the store,
original input files or files that are easily recomputed can safely be dropped to save even more
disk-space. Beyond this, upon creation of an analysis project, the associated GitLab project is
automatically configured as a remote with a publication dependency on the data store, thus
enabling vastly simplified data publication routines and backups of pristine results: After com-
puting their results, a datalad push is all it takes to backup and share ones scientific insights.
Thus, even with a complex setup of data store, compute infrastructure, and repository hosting,

23.2. The DataLad approach 353

The DataLad Handbook, Release 0.12.0+519.g04985082

configurations adjusted to the compute infrastructure can be distributed and used to mitigate
any potential remaining technical overhead. Finally, with all datasets stored in a RIA store and
in a single place, any remaining maintenance and query tasks in the datasets can be performed
by data management personnel without requiring domain knowledge about dataset contents.

23.3 Step-by-step

The following section will elaborate on the details of the technical implementation of a RIA
store, and the workflow requirements and incentives for researchers. Both of them are aimed
at making scientific analyses on a compute cluster scale and can be viewed as complimentary
but independent.

Note: Some hardware-specific implementation details are unique to the real-world example
this usecase is based on, and are not a requirement. In this particular case of application, for
example, a remote setup for a RIA store made sense: Parts of an old compute cluster and of the
super computer at the Juelich supercomputing centre (JSC) instead of the institutes compute
cluster are used to host the data store. This may be an unconventional storage location, but it
is convenient: The data does not strain the compute cluster, and with DataLad, it is irrelevant
where the RIA store is located. The next subsection introduces the general layout of the compute
infrastructure and some DataLad-unrelated incentives and restrictions.

Incentives and imperatives for disk-space aware computing

On a high level, the layout and relationships of the relevant computational infrastructure in this
usecase are as follows: Every researcher has a workstation that they can access the compute
cluster with. On the compute clusters’ head node, every user account has their own home direc-
tory. These are the private spaces of researchers and are referred to as $HOME in Fig. 1. Analyses
should be conducted on the cluster’s compute nodes ($COMPUTE). $HOME and $COMPUTE are not
managed or trusted by data management personnel, and are seen as ephemeral (short-lived).
The RIA store ($DATA) can be accessed both from $HOME and $COMPUTE, in both directions: Re-
searchers can pull datasets from the store, push new datasets to it, or update (certain) existing
datasets. $DATA is the one location in which experienced data management personnel ensures
back-up and archival, performs house-keeping, and handles permissions, and is thus were pris-
tine raw data is stored or analysis code or results from $COMPUTE and $HOME should end up in.
This aids organization, and allows a central management of back-ups and archival, potentially
by data stewards or similar data management personnel with no domain knowledge about data
contents.

23.3. Step-by-step 354

The DataLad Handbook, Release 0.12.0+519.g04985082

ephemeral
(untrusted)

(unmanaged)

persistent
trusted

managed

$HOME

$COMPUTE

$DATA

Fig. 1: Trinity of research data handling: The data store ($DATA) is managed and backed-up.
The compute cluster ($COMPUTE) has an analysis-appropriate structure with adequate resources,
but just as users workstations/laptops ($HOME), it is not concerned with data hosting.

One aspect of the problem are disk-space unaware computing workflows. Researchers make
and keep numerous copies of data in their home directory and perform computationally expen-
sive analyses on the headnode of a compute cluster because they do not know better, and/or
want to do it in the easiest way possible. A general change for the better can be achieved by
imposing sensible limitations and restrictions on what can be done at which scale: Data from
the RIA store ($DATA) is accessible to researchers for exploration and computation, but the scale
of the operations they want to perform can require different approaches. In their $HOME, re-
searchers are free to do whatever they want as long as it is within the limits of their machines
or their user accounts (100GB). Thus, researchers can explore data, test and develop code, or
visualize results, but they can not create complete dataset copies or afford to keep an excess
of unused data around. Only $COMPUTE has the necessary hardware requirements for expensive
computations. Thus, within $HOME, researchers are free to explore data as they wish, but scaling
requires them to use $COMPUTE. By using a job scheduler, compute jobs of multiple researchers
are distributed fairly across the available compute infrastructure. Version controlled (and po-

23.3. Step-by-step 355

The DataLad Handbook, Release 0.12.0+519.g04985082

tentially reproducible) research logs and the results of the analyses can be pushed from COMPUTE
to $DATA for back-up and archival, and hence anything that is relevant for a research project is
tracked, backed-up, and stored, all without straining available disk-space on the cluster after-
wards. While the imposed limitations are independent of DataLad, DataLad can make sure that
the necessary workflows are simple enough for researchers of any seniority, background, or skill
level.

Remote indexed archive (RIA) stores

A RIA store is a storage solution for DataLad datasets that can be flexibly extended with new
datasets, independent of static file names or directory hierarchies, and that can be (automat-
ically) maintained or queried without requiring expert or domain knowledge about the data.
At its core, it is a flat, file-system based repository representation of any number of datasets,
limited only by disk-space constrains of the machine it lies on.

Put simply, a RIA store is a dataset storage location that allows for access to and collaboration
on DataLad datasets. The high-level workflow overview is as follows: Create a dataset, use
the datalad create-sibling-ria command to establish a connection to an either pre-existing
or not-yet-existing RIA store, publish dataset contents with datalad push, (let others) clone
the dataset from the RIA store, and (let others) publish and pull updates. In the case of large,
institute-wide datasets, a RIA store (or multiple RIA stores) can serve as a central storage lo-
cation that enables fine-grained data access to everyone who needs it, and as a storage and
back-up location for all analyses datasets. Beyond constituting central storage locations, RIA
stores also ease dataset maintenance and queries: If all datasets of an institute are kept in a
single RIA store, questions such as “Which projects use this data as their input?”, “In which
projects was the student with this Git identity involved?”, “Give me a complete research log of
what was done for this publication”, or “Which datasets weren’t used in the last 5 years?” can be
answered automatically with Git tools, without requiring expert knowledge about the contents
of any of the datasets, or access to the original creators of the dataset. To find out more about
RIA stores, check out section Remote Indexed Archives for dataset storage and backup (page 257).

Todo: Add a paragraph on the setup in INM-7 once it exists (bulk nodes, project-wise RIA
stores, stores in home directories, etc.

RIA store workflows

Todo: Sketch a RIA store workflow from a user’s perspective

Configurations can hide the technical layers

Setting up a RIA store and appropriate siblings is fairly easy – it requires only the datalad
create-sibling-ria command. However, in the institute this usecase describes, in order to
spare users knowing about RIA stores, custom configurations are distributed via DataLad’s run-
procedures to simplify workflows further and hide the technical layers of the RIA setup:

A custom procedure403 performs the relevant sibling setup with a fully configured link to the
403 https://jugit.fz-juelich.de/inm7/infrastructure/inm7-datalad/blob/master/inm7_datalad/resources/

procedures/cfg_inm7.py

23.3. Step-by-step 356

https://jugit.fz-juelich.de/inm7/infrastructure/inm7-datalad/blob/master/inm7_datalad/resources/procedures/cfg_inm7.py

The DataLad Handbook, Release 0.12.0+519.g04985082

RIA store, and, on top of it, also creates an associated repository with a publication dependency
on the RIA store to an institute’s GitLab instance404. With a procedure like this in place system-
wide, an individual researcher only needs to call the procedure right at the time of dataset
creation, and has a fully configured and set up analysis dataset afterwards:

$ datalad create -c inm7 <PATH>

Working in this dataset will require only datalad save and datalad push commands, and
configurations ensure that the projects history and results are published where they need to be:
The RIA store, for storing and archiving the project including data, and GitLab, for exposing
the projects progress to the outside and ease collaboration or supervision. Users do not need
to know the location of the store, its layout, or how it works – they can go about doing their
science, while DataLad handles publications routines.

In order to get input data from datasets hosted in the datastore without requiring users to know
about dataset IDs or construct ria+ URLs, superdatasets get a sibling on GitLab or GitHub with
a human readable name. Users can clone the superdatasets from the web hosting service, and
obtain data via datalad get. A concrete example for this is described in the usecase Scaling up:
Managing 80TB and 15 million files from the HCP release (page 339). While datalad get will
retrieve file or subdataset contents from the RIA store, users will not need to bother where the
data actually comes from.

Summary

The infrastructural and workflow changes around DataLad datasets in RIA stores improve the
efficiency of the institute:

With easy local version control workflows and DataLad-based data management routines, re-
searchers are able to focus on science and face barely any technical overhead for data manage-
ment. As file content for analyses is obtained on demand via datalad get, researchers selectively
obtain only those data they need instead of having complete copies of datasets as before, and
thus save disk space. Upon datalad push, computed results and project histories can be pushed
to the data store and the institute’s GitLab instance, and be thus backed-up and accessible for
collaborators or supervisors. Easy-to-reobtain input data can safely be dropped to free disk
space on the compute cluster. Sensible incentives for computing and limitations on disk space
prevent unmanaged clutter. With a RIA store full of bare git repositories, it is easily maintain-
able by data stewards or system administrators. Common compression or cleaning operations
of Git and git-annex are performed without requiring knowledge about the data inside of the
store, as are queries on interesting aspects of datasets, potentially across all of the datasets of
the institute. With a remote data store setup, the compute cluster is efficiently used for com-
putations instead of data storage. Researchers can not only compute their analyses faster and
on larger datasets than before, but with DataLad’s version control capabilities their work also
becomes more transparent, open, and reproducible.

404 To re-read about DataLad’s run-procedures, check out section Configurations to go (page 120). You can find the
source code of the procedure on GitLab405.

405 https://jugit.fz-juelich.de/inm7/infrastructure/inm7-datalad/blob/master/inm7_datalad/resources/
procedures/cfg_inm7.py

23.3. Step-by-step 357

https://jugit.fz-juelich.de/inm7/infrastructure/inm7-datalad/blob/master/inm7_datalad/resources/procedures/cfg_inm7.py

CHAPTER

TWENTYFOUR

USING GLOBUS AS A DATA STORE FOR THE CANADIAN OPEN
NEUROSCIENCE PORTAL

This use case shows how the Canadian Open Neuroscience Portal (CONP)406 disseminates data
as DataLad datasets using the Globus407 network with git-annex, a custom git-annex special
remote, and Datalad. It demonstrates

1. How to enable the git-annex Globus special remote408 to access files content from
Globus.org409,

2. The workflows used to access datasets via the Canadian Open Neuroscience Portal
(CONP)410,

3. An example of disk-space aware computing with large datasets distributed across systems
that avoids unnecessary replication, eased by DataLad and git-annex.

24.1 The Challenge

Every day, researchers from different fields strive to advance present state-of-the-art scientific
knowledge by generating and publishing novel results. Crucially, they must share such results
with the scientific community to enable other researchers to further build on existing data and
avoid duplicating work.

The Canadian Open Neuroscience Portal (CONP)411 is a publicly available platform that aims
to remove the technical barriers to practicing open science and improve the accessibility and
reusability of neuroscience research to accelerate the pace of discovery. To this end, the platform
will provide a unified interface that – among other things – enables sharing and open dissemina-
tion of both neuroscience data and methods to the global community. Managing the scientific
data ecosystem is extremely challenging given the amount of new data generated every day,
however. CONP must take a strategic solution to allow researchers to

• dynamically work on present data,

• upload new versions of the data, and

• generate additional scientific work.

406 https://conp.ca/
407 https://www.globus.org/
408 https://github.com/CONP-PCNO/git-annex-remote-globus
409 https://www.globus.org/
410 https://conp.ca/
411 https://conp.ca/

358

https://conp.ca/
https://www.globus.org/
https://github.com/CONP-PCNO/git-annex-remote-globus
https://www.globus.org/
https://conp.ca/
https://conp.ca/
https://conp.ca/

The DataLad Handbook, Release 0.12.0+519.g04985082

An underlying data management system to achieve this must be flexible, dynamic and light-
weight. It would need to have the ability to easily distribute datasets across multiple locations
to reduce the need of re-collecting or replicating data that is similar to already existing datasets.

24.2 The Datalad Approach

CONP makes use of Datalad as a data management tool to enable efficient analysis and work on
datasets: Datalad minimizes the computational cost of holding full storage of datasets versions,
it allows files in a dataset to be distributed across multiple download sources, and to be retrieved
on demand only to save disk space. Therefore, it is common practice for researchers to both
download and publish research content in a dataset format via a CONP, which provides them
with a vast dataset repository.

Find out more

Basic principles of DataLad for new readers
If you are new to DataLad, the introduction of the handbook and the chapter DataLad
datasets (page 28) can give you a good idea of what DataLad and its underlying tools can
to, as well as a hands-on demonstration. This findoutmore, in the meantime, sketches a
high-level overview of the principles behind DataLad’s data sharing capacities.
Datalad is built on top of Git412 and git-annex413, and enables data version control. A
one-page overview can be found in section What you really need to know (page 21).
git-annex is a useful tool that extends Git with the ability to manage repositories in a
lightweight fashion even if they contain large amounts of data. One main principle of
git-annex lies storing data that should not be stored in Git (e.g., due to size limits) in an
annex. In its place, it generates symbolic links (symlinks) to these annexed files that en-
code their file content. Only the symlinks are committed into Git while git-annex handles
data management in the annex. A detailed explanation of this process can be found in
the section Data integrity (page 77), but the outcome of it is a light-weight Git reposi-
tory that can be cloned fast and yet contains access to arbitrarily large data managed by
git-annex.
In the case of data sharing procedures, annexed data can be stored in various third party
hosting services configured as special remotes414. When retrieving data, git-annex re-
quests access to the primary data source storing those files to retrieve actual files content
when the user needs it.

412 https://git-scm.com/
413 https://git-annex.branchable.com/
414 https://git-annex.branchable.com/special_remotes/

The workflows for users to get data are straightforward: Users log into the CONP portal and
install Datalad datasets with datalad install -r <dataset>. This gives them access to the
annexed files (as mentioned in the findoutmore above, large files replaced by their symlinks).
To request the content of the annexed files, they simply download those files locally in their
filesystem using datalad get path/to/file. So simple!

On a technical level, under the hood, git-annex needs to have a connection established with the
primary data source, the special remote, that hosts and provides the requested files’ contents.
In some cases, annexed files are stored in Globus.org415. Globus is an efficient transfer files
system suitable for researchers to share and transfer files between so called endpoints, locations

415 https://www.globus.org/

24.2. The Datalad Approach 359

https://git-scm.com/
https://git-annex.branchable.com/
https://git-annex.branchable.com/special_remotes/
https://www.globus.org/

The DataLad Handbook, Release 0.12.0+519.g04985082

in Globus.org where files get uploaded by their owners or get transferred to, that can be either
private or public. Annexed file contents are stored in such Globus endpoints416. Therefore,
when users download annexed files, Globus communicates with git-annex to provide access to
files content. Given this functionality, we can say that Globus works as a data store for git-
annex, or in technical terms, that Globus is configured to work as a special remote for git-annex.
This is possible via the git-annex backend interface implementation for Globus called git-annex-
globus-remote417 developed by CONP. In conjunction, CONP and the git-annex-globus-remote
constitute the building blocks that enable access to datasets and its data: CONP hosts small-
sized datasets, and Globus.org is the data store that (large) file content can be retrieved from.

To sum up, CONP makes a variety of datasets available and provides them to researchers as
Datalad datasets that have the regular, advantageous Datalad functionality. All of this exists
thanks to the ability of git-annex and Datalad to interface with special remote locations across
the web such as Globus.org418 to request access to data. In this way, researchers have access to
a wide research data ecosystem and can use and reuse existing data, thus reducing the need of
data replication.

24.3 Step-by-Step

Globus as git-annex data store

A remote data store exists thanks to git-annex (which DataLad builds upon): git-annex uses a
key-value pair to reference files. In the git-annex object tree, large files in datasets are stored
as values while the key is generated from their contents and is checked into Git. The key is
used to reference the location of the value in the object tree425. The object-tree (or keystore)
with the data contents can be located anywhere – its location only needs to be encoded using
a special remote. Therefore, thanks to the git-annex-globus-remote419 interface, Globus.org
provides git-annex with location information to retrieve values and access files content with the
corresponding keys. To ultimately enable end users’ access to data, git-annex registers Globus
locations by assigning them to Globus-specific URLs, such as globus://dataset_id/path/to/
file. Each Globus URL is associated with a the key corresponding to the given file. The use of
a Globus URL protocol is a fictitious mean to assign each file of the dataset a unique location
and source and therefore, it is a wrapper for additional validation that is performed by the git-
annex-globus-remote to check on the actual presence of the file within the Globus transfer file
ecosystem. In other words, the ‘Globus URL’ is simply an alias of an existing file located on the
web and specifically available in Globus.org. Registration of Globus URLs in git-annex is among
the configuration procedures carried out on an administrative, system-wide level, and users will
only deal with direct easy access of desired files.

With this, Globus is configured to receive data access requests from git-annex and to respond
back if data is available. Currently, the git-annex-globus-remote only supports data download
operations. In the future, it could be useful for additional functionality as well. When the globus
special remote gets initialized for the first time, the user has to authenticate to Globus.org using
ORCID420 , Gmail421 or a specific Globus account. This step will enable git-annex to then initial-

416 https://docs.globus.org/faq/globus-connect-endpoints/#what_is_an_endpoint
417 https://github.com/CONP-PCNO/git-annex-remote-globus
418 https://www.globus.org
425 More details on how git-annex handles data underneath the hood and how the object-tree works can be found

in section Data integrity (page 77).
419 https://github.com/CONP-PCNO/git-annex-remote-globus
420 https://orcid.org/
421 https://mail.google.com

24.3. Step-by-Step 360

https://docs.globus.org/faq/globus-connect-endpoints/#what_is_an_endpoint
https://github.com/CONP-PCNO/git-annex-remote-globus
https://github.com/CONP-PCNO/git-annex-remote-globus
https://www.globus.org
https://github.com/CONP-PCNO/git-annex-remote-globus
https://orcid.org/
https://mail.google.com

The DataLad Handbook, Release 0.12.0+519.g04985082

ize the globus special remote and establish the communication process. Instructions to use the
globus special remote are available at github.com/CONP-PCNO/git-annex-remote-globus422.
Guidelines specifying the standard communication protocol to implement a custom special re-
mote can be found at git-annex.branchable.com/design/external_special_remote_protocol423.

An example using Globus from a user perspective

It always starts with a dataset, installed with either datalad install or datalad clone.

$ datalad install -r <dataset>
$ cd <dataset>

In order to get access to annexed data stored on Globus.org, users need to install the globus-
special-remote. If it is the first time using Globus, users will need to authenticate to Globus.org
by running the git-annex-remote-globus setup command:

$ pip install git-annex-remote-globus
if first time
$ git-annex-remote-globus setup

After the installation of a dataset, we can see that most of the files in the dataset are annexed:
Listing a file with ls -l will reveal a symlink to the dataset’s annex.

$ ls -l NeuroMap_data/cortex/mask/mask.mat
cortex/mask/mask.mat -> ../../../.git/annex/objects/object.mat

However, without having any content downloaded yet, the symlink currently points into a void,
and tools will not be able to open the file as its contents are not yet locally available.

$ cat NeuroMap_data/cortex/mask/mask.mat
NeuroMap_data/cortex/mask/mask.mat: No such file or directory

However, data retrieval is easy. At first, users have to enable the globus remote.

$ git annex enableremote globus
enableremote globus ok
(recording state in git...)

After that, they can download any file, directory, or complete dataset using datalad get:

$ datalad get NeuroMap_data/cortex/mask/mask.mat
get(ok): NeuroMap_data/cortex/mask/mask.mat (file) [from globus...]

$ ls -l NeuroMap_data/cortex/mask/mask.mat
cortex/mask/mask.mat -> ../../../.git/annex/objects/object.mat

$ cat NeuroMap_data/cortex/mask/mask.mat
you can now access the file !

Downloaded! Researchers could now use this dataset to replicate previous analyses and further
build on present data to bring scientific knowledge forward. CONP thus makes a variety of
datasets flexibly available and helps to disseminate data. The on-demand availability of files in

422 https://github.com/CONP-PCNO/git-annex-remote-globus
423 https://git-annex.branchable.com/design/external_special_remote_protocol/

24.3. Step-by-Step 361

https://github.com/CONP-PCNO/git-annex-remote-globus
https://git-annex.branchable.com/design/external_special_remote_protocol/

The DataLad Handbook, Release 0.12.0+519.g04985082

datasets can help scientists to save disk space. For this, they could get only those data files that
they need instead of obtaining complete copies of the dataset, or they could locally drop data
that is hosted and thus easily re-available on Globus.org after their analyses are done.

24.4 Resources

The README at github.com/CONP-PCNO/git-annex-remote-globus424 provides an excellent and
in-depth overview of how to install and use the git-annex special remote for Globus.org.

424 https://github.com/CONP-PCNO/git-annex-remote-globus

24.4. Resources 362

https://github.com/CONP-PCNO/git-annex-remote-globus

CHAPTER

TWENTYFIVE

CONTRIBUTING

If you are using DataLad for a use case that is not yet in this chapter, we would be delighted to
have you tell us about it in the form of a usecase. Please see the contributing guide for more
info.

363

../contributing.html

Part V

Appendix

364

APPENDIX

A

GLOSSARY

absolute path The complete path from the root of the file system. Absolute paths always start
with /. Example: /home/user/Pictures/xkcd-webcomics/530.png. See also relative path.

adjusted branch (git-annex term) TODO

annex Git annex concept: a different word for object-tree.

annex UUID A UUID assigned to an annex of each individual clone of a dataset repository. git-
annex uses this UUID to track file content availability information. The UUID is available
under the configuration key annex.uuid and is stored in the configuration file of a local
clone (<dataset root>/.git/config). A single dataset instance (i.e. a local clone) has
exactly one annex UUID, but other clones of the same dataset each have their own unique
annex UUIDs.

bare Git repositories A bare Git repository is a repository that contains the contents of the .
git directory of regular DataLad datasets or Git repositories, but no worktree or checkout.
This has advantages: The repository is leaner, it is easier for administrators to perform
garbage collections, and it is required if you want to push to it at all times. You can find
out more on what bare repositories are and how to use them here426.

bash A Unix shell and command language.

Bitbucket Bitbucket is an online platform where one can store and share version controlled
projects using Git (and thus also DataLad project), similar to GitHub or GitLab. See bit-
bucket.org427.

branch Git concept: A lightweight, independent history streak of your dataset. Branches can
contain less, more, or changed files compared to other branches, and one can merge the
changes a branch contains into another branch.

checksum TODO

clone Git concept: A copy of a Git repository. In Git-terminology, all “installed” datasets are
clones.

commit Git concept: Adding selected changes of a file or dataset to the repository, and thus
making these changes part of the revision history of the repository. Should always have
an informative commit message.

commit message Git concept: A concise summary of changes you should attach to a datalad
save command. This summary will show up in your DataLad dataset history.

426 https://git-scm.com/book/en/v2/Git-on-the-Server-Getting-Git-on-a-Server
427 https://bitbucket.org.com/

365

https://git-scm.com/book/en/v2/Git-on-the-Server-Getting-Git-on-a-Server
https://bitbucket.org.com/
https://bitbucket.org.com/

The DataLad Handbook, Release 0.12.0+519.g04985082

DataLad dataset A DataLad dataset is a Git repository that may or may not have a data annex
that is used to manage data referenced in a dataset. In practice, most DataLad datasets
will come with an annex.

DataLad extension Python packages that equip DataLad with specialized commands. The sec-
tion DataLad’s extensions (page 248) gives and overview of available extensions and links
to Handbook chapters that contain demonstrations.

DataLad subdataset A DataLad dataset contained within a different DataLad dataset (the par-
ent or DataLad superdataset).

DataLad superdataset A DataLad dataset that contains one or more levels of other DataLad
datasets (DataLad subdataset).

dataset ID A UUID that identifies a dataset as a unit – across its entire history and flavors.
This ID is stored in a dataset’s own configuration file (<dataset root>/.datalad/config)
under the configuration key datalad.dataset.id. As this configuration is stored in a file
that is part of the Git history of a dataset, this ID is identical for all clones of a dataset and
across all its versions.

Debian A common Linux distribution. More information here428.

DOI A digital object identifier (DOI) is a character string used to permanently identify a re-
source and link to in on the web. A DOI will always refer to the one resource it was
assigned to, and only that one.

extractor DataLad concept: A metadata extractor of the DataLad extension datalad-metalad
enables DataLad to extract and aggregate special types of metadata.

environment variable A variable made up of a name/value pair. Programs using a given envi-
ronment variable will use its associated value for their execution.

ephemeral clone TODO

force-push Git concept; Enforcing a git push command with the --force option. Find out
more in the documentation of git push429.

GIN A web-based repository store for data management that you can use to host and share
datasets. Find out more about GIN here430.

Git A version control system to track changes made to small-sized files over time. You can find
out more about git in this (free) book431 or these interactive Git tutorials432 on GitHub.

git-annex A distributed file synchronization system, enabling sharing and synchronizing col-
lections of large files. It allows managing files with Git, without checking the file content
into Git.

git-annex branch This branch exists in your dataset if the dataset contains an annex. The
git-annex branch is completely unconnected to any other branch in your dataset, and
contains different types of log files. Its contents are used for git-annex’s internal tracking
of the dataset and its annexed contents. The branch is managed by git-annex, and you
should not temper with it unless you absolutely know what you are doing.

428 https://www.debian.org/index.en.html
429 https://git-scm.com/docs/git-push#Documentation/git-push.txt---force
430 https://gin.g-node.org/G-Node/Info/wiki
431 https://git-scm.com/book/en/v2
432 https://try.github.io/

366

https://www.debian.org/index.en.html
https://git-scm.com/docs/git-push#Documentation/git-push.txt---force
https://gin.g-node.org/G-Node/Info/wiki
https://git-scm.com/book/en/v2
https://try.github.io/

The DataLad Handbook, Release 0.12.0+519.g04985082

Git config file A file in which Git stores configuration option. Such a file usually exists on the
system, user, and repository (dataset) level.

GitHub GitHub is an online platform where one can store and share version controlled projects
using Git (and thus also DataLad project). See‘GitHub.com <https://github.com/>‘_.

Gitk A repository browser that displays changes in a repository or a selected set of commits. It
visualizes a commit graph, information related to each commit, and the files in the trees
of each revision.

GitLab An online platform to host and share software projects version controlled with Git,
similar to GitHub. See Gitlab.com433.

globbing A powerful pattern matching function of a shell. Allows to match the names of mul-
tiple files or directories. The most basic pattern is *, which matches any number of char-
acter, such that ls *.txt will list all .txt files in the current directory. You can read about
more about Pattern Matching in Bash’s Docs434.

http Hypertext Transfer Protocol; A protocol for file transfer over a network.

https Hypertext Transfer Protocol Secure; A protocol for file transfer over a network.

master Git concept: The default branch in a dataset.

merge Git concept: to integrate the changes of one branch/sibling/ . . . into a different branch.

metadata “Data about data”: Information about one or more aspects of data used to summarize
basic information, for example means of create of the data, creator or author, size, or
purpose of the data. For example, a digital image may include metadata that describes
how large the picture is, the color depth, the image resolution, when the image was
created, the shutter speed, and other data.

nano A common text-editor.

object-tree git-annex concept: The place where git-annex stores available file contents. Files
that are annexed get a symlink added to Git that points to the file content. A different
word for annex.

permissions Access rights assigned by most file systems that determine whether a user can
view (read permission), change (write permission), or execute (execute permission)
a specific content.

• read permissions grant the ability to a file, or the contents (file names) in a directory.

• write permissions grant the ability to modify a file. When content is stored in the
object-tree by git-annex, your previously granted write permission for this content is
revoked to prevent accidental modifications.

• execute permissions grant the ability to execute a file. Any script that should be an
executable needs to get such permission.

pip A Python package manager. Short for “Pip installs Python”. pip install <package name>
searches the Python package index PyPi435 for a package and installs it while resolving
any potential dependencies.

433 https://about.gitlab.com/
434 https://www.gnu.org/savannah-checkouts/gnu/bash/manual/bash.html#Pattern-Matching
435 https://pypi.org/

367

https://github.com/
https://about.gitlab.com/
https://www.gnu.org/savannah-checkouts/gnu/bash/manual/bash.html#Pattern-Matching
https://pypi.org/

The DataLad Handbook, Release 0.12.0+519.g04985082

provenance A record that describes entities and processes that were involved in producing or
influencing a digital resource. It provides a critical foundation for assessing authenticity,
enables trust, and allows reproducibility.

publication dependency DataLad concept: An existing sibling is linked to a new sibling so
that the existing sibling is always published prior to the new sibling. The existing sibling
could be a special remote to publish file contents stored in the dataset annex automatically
with every datalad push to the new sibling. Publication dependencies can be set with the
option publish-depends in the commands datalad siblings, datalad create-sibling,
and datalad create-sibling-github/gitlab.

relative path A path related to the present working directory. Relative paths never start with
/. Example: ../Pictures/xkcd-webcomics/530.png. See also absolute path.

remote Git-terminology: A repository (and thus also DataLad dataset) that a given repository
tracks. A sibling is DataLad’s equivalent to a remote.

Remote Indexed Archive (RIA) store A Remote Indexed Archive (RIA) Store is a flexible and
scalable dataset storage solution, useful for collaborative, back-up, or storage workflows.
Read more about RIA stores in the section Remote Indexed Archives for dataset storage and
backup (page 257).

run procedure DataLad concept: An executable (such as a script) that can be called with
the datalad run-procedure command and performs modifications or routine tasks in
datasets. Procedures can be written by users, or come with DataLad and its extensions.
Find out more in section Configurations to go (page 120)

run record A command summary of a datalad run command, generated by DataLad and in-
cluded in the commit message.

sed A Unix stream editor to parse and transform text. Find out more here436 and in its docu-
mentation437.

shasum A hexadecimal number, 40 digits long, that is produced by a secure hash algorithm,
and is used by Git to identify commits. A shasum is a type of checksum.

shebang The characters #! at the very top of a script. One can specify the interpreter (i.e.,
the software that executes a script of yours, such as Python) after with it such as in #!
/usr/bin/python. If the script has executable permissions, it is henceforth able to call the
interpreter itself. Instead of python code/myscript.py one can just run code/myscript if
myscript has executable permissions and a correctly specified shebang.

special remote git-annex concept: A protocol that defines the underlying transport of annexed
files to and from places that are not Git repositories (e.g., a cloud service or external
machines such as HPC systems).

squash Git concept; Squashing is a Git operation which rewrites history by taking a range of
commits and squash them into a single commit. For more information on rewriting Git
history, checkout section Back and forth in time (page 213) and the documentation438.

SSH Secure shell (SSH) is a network protocol to link one machine (computer), the client, to a
different local or remote machine, the server. See also: SSH server.

SSH key An SSH key is an access credential in the SSH protocol that can be used to login from
one system to remote servers and services, such as from your private computer to an SSH

436 https://en.wikipedia.org/wiki/Sed
437 https://www.gnu.org/software/sed/manual/sed.html
438 https://git-scm.com/book/en/v2/Git-Tools-Rewriting-History

368

https://en.wikipedia.org/wiki/Sed
https://www.gnu.org/software/sed/manual/sed.html
https://www.gnu.org/software/sed/manual/sed.html
https://git-scm.com/book/en/v2/Git-Tools-Rewriting-History

The DataLad Handbook, Release 0.12.0+519.g04985082

server, without supplying your username or password at each visit. To use an SSH key
for authentication, you need to generate a key pair on the system you would like to use
to access a remote system or service (most likely, your computer). The pair consists of a
private and a public key. The public key is shared with the remote server, and the private
key is used to authenticate your machine whenever you want to access the remote server
or service. Services such as GitHub, GitLab, and GIN use SSH keys and the SSH protocol to
ease access to repositories. This tutorial by GitHub439 is a detailed step-by-step instruction
to generate and use SSH keys for authentication.

SSH server An remote or local computer that users can log into using the SSH protocol.

stdin Unix concept: One of the three standard input/output streams440 in programming. Stan-
dard input (stdin) is a stream from which a program reads its input data.

stderr Unix concept: One of the three standard input/output streams441 in programming. Stan-
dard error (stderr) is a stream to which a program outputs error messages, independent
from standard output.

stdout Unix concept: One of the three standard input/output streams442 in programming.
Standard output (stdout) is a stream to which a program writes its output data.

symlink A symbolic link (also symlink or soft link) is a reference to another file or path in the
form of a relative path. Windows users are familiar with a similar concept: shortcuts.

sibling DataLad concept: A dataset clone that a given DataLad dataset knows about. Changes
can be retrieved and pushed between a dataset and its sibling. It is the equivalent of a
remote in Git.

submodule Git concept: a submodule is a Git repository embedded inside another Git reposi-
tory. A DataLad subdataset is known as a submodule in the Git config file.

tab completion Also known as command-line completion. A common shell feature in which
the program automatically fills in partially types commands upon pressing the TAB key.

tag Git concept: A mark on a commit that can help to identify commits. You can attach a tag
with a name of your choice to any commit by supplying the --version-tag <TAG-NAME>
option to datalad save.

the DataLad superdataset /// DataLad provides unified access to a large amount of data at
an open data collection found at datasets.datalad.org443. This collection is known as “The
DataLad superdataset” and under its shortcut, ///. You can install the superdataset – and
subsequently query its content via metadata search – by running datalad clone ///.

tig A text-mode interface for git that allows you to easily browse through your commit history.
It is not part of git and needs to be installed. Find out more here444.

Ubuntu A common Linux distribution. More information here445.

UUID Universally Unique Identifier. It is a character string used for unambiguous, identification,
formatted according to a specific standard. This identification is not only unambiguous
and unique on a system, but indeed universally unique – no UUID exists twice anywhere

439 https://help.github.com/en/github/authenticating-to-github/generating-a-new-ssh-key-and-adding-it-to-the-ssh-agent
440 https://en.wikipedia.org/wiki/Standard_streams
441 https://en.wikipedia.org/wiki/Standard_streams
442 https://en.wikipedia.org/wiki/Standard_streams
443 http://datasets.datalad.org/
444 https://jonas.github.io/tig/
445 https://ubuntu.com

369

https://help.github.com/en/github/authenticating-to-github/generating-a-new-ssh-key-and-adding-it-to-the-ssh-agent
https://en.wikipedia.org/wiki/Standard_streams
https://en.wikipedia.org/wiki/Standard_streams
https://en.wikipedia.org/wiki/Standard_streams
http://datasets.datalad.org/
https://jonas.github.io/tig/
https://ubuntu.com

The DataLad Handbook, Release 0.12.0+519.g04985082

on the planet. Every DataLad dataset has a UUID that identifies a dataset uniquely as
a whole across its entire history and flavors called Dataset ID that looks similar to this
0828ac72-f7c8-11e9-917f-a81e84238a11. This dataset ID will only exist once, identifying
only one particular dataset on the planet. Note that this does not require all UUIDs to be
known in some central database – the fact that no UUID exists twice is achieved by mere
probability: The chance of a UUID being duplicated is so close to zero that it is negligible.

version control Processes and tools to keep track of changes to documents or other collections
of information.

vim A text editor, often the default in UNIX operating systems. If you are not used to using it,
but ended up in it accidentally: press ESC : q ! Enter to exit without saving. Here is help:
A vim tutorial446 and how to configure the default editor for git447.

zsh A Unix shell.

446 https://www.openvim.com/
447 https://git-scm.com/book/en/v2/Customizing-Git-Git-Configuration

370

https://www.openvim.com/
https://git-scm.com/book/en/v2/Customizing-Git-Git-Configuration

APPENDIX

B

FREQUENTLY ASKED QUESTIONS

This section answers frequently asked questions about high-level DataLad concepts or com-
mands. If you have a question you want to see answered in here, please create an issue448 or a
pull request449. For a series of specialized command snippets for various use cases, please see
section Gists (page 237).

B.1 What is Git?

Git is a free and open source distributed version control system. In a directory that is initialized
as a Git repository, it can track small-sized files and the modifications done to them. Git thinks of
its data like a series of snapshots – it basically takes a picture of what all files look like whenever
a modification in the repository is saved. It is a powerful and yet small and fast tool with
many features such as branching and merging for independent development, checksumming of
contents for integrity, and easy collaborative workflows thanks to its distributed nature.

DataLad uses Git underneath the hood. Every DataLad dataset is a Git repository, and you can
use any Git command within a DataLad dataset. Based on the configurations in .gitattributes,
file content can be version controlled by Git or managed by git-annex, based on path pattern,
file types, or file size. The section More on DIY configurations (page 114) details how these
configurations work. This chapter450 gives a comprehensive overview on what Git is.

B.2 Where is Git’s “staging area” in DataLad datasets?

As mentioned in Populate a dataset (page 30), a local version control workflow with DataLad
“skips” the staging area (that is typical for Git workflows) from the user’s point of view.

B.3 What is git-annex?

git-annex (https://git-annex.branchable.com/) is a distributed file synchronization system writ-
ten by Joey Hess. It can share and synchronize large files independent from a commercial ser-
vice or a central server. It does so by managing all file content in a separate directory (the annex,
object tree, or key-value-store in .git/annex/objects/), and placing only file names and meta-
data into version control by Git. Among many other features, git-annex can ensure sufficient
amounts of file copies to prevent accidental data loss and enables a variety of data transfer

448 https://github.com/datalad-handbook/book/issues/new
449 http://handbook.datalad.org/en/latest/contributing.html
450 https://git-scm.com/book/en/v2/Getting-Started-What-is-Git%3F

371

https://github.com/datalad-handbook/book/issues/new
http://handbook.datalad.org/en/latest/contributing.html
https://git-scm.com/book/en/v2/Getting-Started-What-is-Git%3F
https://git-annex.branchable.com/

The DataLad Handbook, Release 0.12.0+519.g04985082

mechanisms. DataLad uses git-annex underneath the hood for file content tracking and trans-
port logistics. git-annex offers an astonishing range of functionality that DataLad tries to expose
in full. That being said, any DataLad dataset (with the exception of datasets configured to be
pure Git repositories) is fully compatible with git-annex – you can use any git-annex command
inside a DataLad dataset.

The chapter Under the hood: git-annex (page 74) can give you more insights into how git-
annex takes care of your data. git-annex’s website451 can give you a complete walk-through
and detailed technical background information.

B.4 What does DataLad add to Git and git-annex?

DataLad sits on top of Git and git-annex and tries to integrate and expose their functionality
fully. While DataLad thus is a “thin layer” on top of these tools and tries to minimize the use of
unique/idiosyncratic functionality, it also tries to simplify working with repositories and adds a
range of useful concepts and functions:

• Both Git and git-annex are made to work with a single repository at a time. For exam-
ple, while nesting pure Git repositories is possible via Git submodules (that DataLad also
uses internally), cleaning up after placing a random file somewhere into this repository
hierarchy can be very painful. A key advantage that DataLad brings to the table is that it
makes the boundaries between repositories vanish from a user’s point of view. Most core
commands have a --recursive option that will discover and traverse any subdatasets and
do-the-right-thing. Whereas git and git-annex would require the caller to first cd to the
target repository, DataLad figures out which repository the given paths belong to and then
works within that repository. datalad save . --recursive will solve the subdataset prob-
lem above for example, no matter what was changed/added, no matter where in a tree of
subdatasets.

• DataLad provides users with the ability to act on “virtual” file paths. If software needs
data files that are carried in a subdataset (in Git terms: submodule) for a computation
or test, a datalad get will discover if there are any subdatasets to install at a particular
version to eventually provide the file content.

• DataLad adds metadata facilities for metadata extraction in various flavors, and can store
extracted and aggregated metadata under .datalad/metadata.

•
Todo: more here.

B.5 Does DataLad host my data?

No, DataLad manages your data, but it does not host it. When publishing a dataset with annexed
data, you will need to find a place that the large file content can be stored in – this could be a
web server, a cloud service such as Dropbox452, an S3 bucket, or many other storage solutions –
and set up a publication dependency on this location. This gives you all the freedom to decide
where your data lives, and who can have access to it. Once this set up is complete, publishing

451 https://git-annex.branchable.com/
452 https://www.dropbox.com/

B.4. What does DataLad add to Git and git-annex? 372

https://git-annex.branchable.com/
https://www.dropbox.com/

The DataLad Handbook, Release 0.12.0+519.g04985082

and accessing a published dataset and its data are as easy as if it would lie on your own machine.
You can find a typical workflow in the chapter Third party infrastructure (page 170).

B.6 How does GitHub relate to DataLad?

DataLad can make good use of GitHub, if you have figured out storage for your large files
otherwise. You can make DataLad publish file content to one location and afterwards au-
tomatically push an update to GitHub, such that users can install directly from GitHub and
seemingly also obtain large file content from GitHub. GitHub is also capable of resolving sub-
module/subdataset links to other GitHub repos, which makes for a nice UI.

B.7 What is the difference between a superdataset, a subdataset, and a
dataset?

Conceptually and technically, there is no difference between a dataset, a subdataset, or a super-
dataset. The only aspect that makes a dataset a sub- or superdataset is whether it is registered
in another dataset (by means of an entry in the .gitmodules, automatically performed upon
an appropriate datalad install -d or datalad create -d command) or contains registered
datasets.

B.8 How can I convert/import/transform an existing Git or git-annex
repository into a DataLad dataset?

You can transform any existing Git or git-annex repository of yours into a DataLad dataset by
running:

$ datalad create -f

inside of it. Afterwards, you may want to tweak settings in .gitattributes according to your
needs (see sections DIY configurations (page 108) and More on DIY configurations (page 114)
for additional insights on this).

B.9 How can I cite DataLad?

There is no official paper on DataLad (yet). To cite it, please use the latest zenodo453 entry
found here: https://zenodo.org/record/3512712.

B.10 How can I help others get started with a shared dataset?

If you want to share your dataset with users that are not already familiar with DataLad, it is
helpful to include some information on how to interact with DataLad datasets in your dataset’s
README (or similar) file. Below, we provide a standard text block that you can use (and adapt as
you wish) for such purposes:

453 https://zenodo.org

B.6. How does GitHub relate to DataLad? 373

https://zenodo.org
https://zenodo.org/record/3512712

The DataLad Handbook, Release 0.12.0+519.g04985082

Find out more

Textblock in .rst format:

B.10. How can I help others get started with a shared dataset? 374

The DataLad Handbook, Release 0.12.0+519.g04985082

DataLad datasets and how to use them

This repository is a `DataLad <https://www.datalad.org/>`__ dataset. It provides
fine-grained data access down to the level of individual files, and allows for
tracking future updates. In order to use this repository for data retrieval,
`DataLad <https://www.datalad.org>`_ is required.
It is a free and open source command line tool, available for all
major operating systems, and builds up on Git and `git-annex
<https://git-annex.branchable.com>`__ to allow sharing, synchronizing, and
version controlling collections of large files. You can find information on
how to install DataLad at `handbook.datalad.org/en/latest/intro/installation.html
<http://handbook.datalad.org/en/latest/intro/installation.html>`_.

Get the dataset
^^^^^^^^^^^^^^^

A DataLad dataset can be ``cloned`` by running::

datalad clone <url>

Once a dataset is cloned, it is a light-weight directory on your local machine.
At this point, it contains only small metadata and information on the
identity of the files in the dataset, but not actual *content* of the
(sometimes large) data files.

Retrieve dataset content
^^^^^^^^^^^^^^^^^^^^^^^^

After cloning a dataset, you can retrieve file contents by running::

datalad get <path/to/directory/or/file>

This command will trigger a download of the files, directories, or
subdatasets you have specified.

DataLad datasets can contain other datasets, so called *subdatasets*. If you
clone the top-level dataset, subdatasets do not yet contain metadata and
information on the identity of files, but appear to be empty directories. In
order to retrieve file availability metadata in subdatasets, run::

datalad get -n <path/to/subdataset>

Afterwards, you can browse the retrieved metadata to find out about
subdataset contents, and retrieve individual files with ``datalad get``. If you
use ``datalad get <path/to/subdataset>``, all contents of the subdataset will
be downloaded at once.

Stay up-to-date
^^^^^^^^^^^^^^^

DataLad datasets can be updated. The command ``datalad update`` will *fetch*
updates and store them on a different branch (by default
``remotes/origin/master``). Running::

datalad update --merge

will *pull* available updates and integrate them in one go.

More information
^^^^^^^^^^^^^^^^

More information on DataLad and how to use it can be found in the DataLad Handbook␣
→˓at
`handbook.datalad.org <http://handbook.datalad.org/en/latest/index.html>`_. The
chapter "DataLad datasets" can help you to familiarize yourself with the
concept of a dataset.

Find out more

Textblock in markdown format

B.10. How can I help others get started with a shared dataset? 375

The DataLad Handbook, Release 0.12.0+519.g04985082

[![made-with-datalad](https://www.datalad.org/badges/made_with.svg)](https://
→˓datalad.org)

DataLad datasets and how to use them

This repository is a [DataLad](https://www.datalad.org/) dataset. It provides
fine-grained data access down to the level of individual files, and allows for
tracking future updates. In order to use this repository for data retrieval,
[DataLad](https://www.datalad.org/) is required. It is a free and
open source command line tool, available for all major operating
systems, and builds up on Git and [git-annex](https://git-annex.branchable.com/)
to allow sharing, synchronizing, and version controlling collections of
large files. You can find information on how to install DataLad at
[handbook.datalad.org/en/latest/intro/installation.html](http://handbook.datalad.
→˓org/en/latest/intro/installation.html).

Get the dataset

A DataLad dataset can be `cloned` by running

```
datalad clone <url>
```

Once a dataset is cloned, it is a light-weight directory on your local machine.
At this point, it contains only small metadata and information on the
identity of the files in the dataset, but not actual *content* of the
(sometimes large) data files.

Retrieve dataset content

After cloning a dataset, you can retrieve file contents by running

```
datalad get <path/to/directory/or/file>`
```

This command will trigger a download of the files, directories, or
subdatasets you have specified.

DataLad datasets can contain other datasets, so called *subdatasets*.
If you clone the top-level dataset, subdatasets do not yet contain
metadata and information on the identity of files, but appear to be
empty directories. In order to retrieve file availability metadata in
subdatasets, run

```
datalad get -n <path/to/subdataset>
```

Afterwards, you can browse the retrieved metadata to find out about
subdataset contents, and retrieve individual files with `datalad get`.
If you use `datalad get <path/to/subdataset>`, all contents of the
subdataset will be downloaded at once.

Stay up-to-date

DataLad datasets can be updated. The command `datalad update` will
fetch updates and store them on a different branch (by default
`remotes/origin/master`). Running

```
datalad update --merge
```

will *pull* available updates and integrate them in one go.

More information

More information on DataLad and how to use it can be found in the DataLad Handbook␣
→˓at
[handbook.datalad.org](http://handbook.datalad.org/en/latest/index.html). The␣
→˓chapter
"DataLad datasets" can help you to familiarize yourself with the concept of a␣
→˓dataset.

Find out more

Textblock without formatting
DataLad datasets and how to use them
This repository is a DataLad (https://www.datalad.org/) dataset. It provides fine-grained
data access down to the level of individual files, and allows for tracking future updates.
In order to use this repository for data retrieval, DataLad (https://www.datalad.org/)
is required. It is a free and open source command line tool, available for all major
operating systems, and builds up on Git and git-annex (https://git-annex.branchable.
com/) to allow sharing, synchronizing, and version controlling collections of large files.
You can find information on how to install DataLad at http://handbook.datalad.org/en/
latest/intro/installation.html.
Get the dataset
A DataLad dataset can be “cloned” by running ‘datalad clone <url>’. Once a dataset is
cloned, it is a light-weight directory on your local machine. At this point, it contains only

B.10. How can I help others get started with a shared dataset? 376

https://www.datalad.org/
https://www.datalad.org/
https://git-annex.branchable.com/
https://git-annex.branchable.com/
http://handbook.datalad.org/en/latest/intro/installation.html
http://handbook.datalad.org/en/latest/intro/installation.html

The DataLad Handbook, Release 0.12.0+519.g04985082

small metadata and information on the identity of the files in the dataset, but not actual
content of the (sometimes large) data files.
Retrieve dataset content
After cloning a dataset, you can retrieve file contents by running ‘datalad get
<path/to/directory/or/file>’
This command will trigger a download of the files, directories, or subdatasets you have
specified.
DataLad datasets can contain other datasets, so called “subdatasets”. If you clone the top-
level dataset, subdatasets do not yet contain metadata and information on the identity of
files, but appear to be empty directories. In order to retrieve file availability metadata in
subdatasets, run ‘datalad get -n <path/to/subdataset>’
Afterwards, you can browse the retrieved metadata to find out about subdataset
contents, and retrieve individual files with datalad get. If you use ‘datalad get
<path/to/subdataset>’, all contents of the subdataset will be downloaded at once.
Stay up-to-date
DataLad datasets can be updated. The command ‘datalad update’ will “fetch” updates and
store them on a different branch (by default ‘remotes/origin/master’). Running ‘datalad
update –merge’ will “pull” available updates and integrate them in one go.
More information
More information on DataLad and how to use it can be found in the DataLad Handbook
at http://handbook.datalad.org/en/latest/index.html. The chapter “DataLad datasets”
can help you to familiarize yourself with the concept of a dataset.

B.11 What is the difference between DataLad, Git LFS, and Flywheel?

Flywheel454 is an informatics platform for biomedical research and collaboration.

Git Large File Storage455 (Git LFS) is a command line tool that extends Git with the ability to
manage large files. In that it appears similar to git-annex.

Todo: this.

A more elaborate delineation from related solutions can be found in the DataLad developer
documentation456.

B.12 DataLad version-controls my large files – great. But how much is
saved in total?

Todo: this.

454 https://flywheel.io/
455 https://github.com/git-lfs/git-lfs
456 http://docs.datalad.org/en/latest/related.html

B.11. What is the difference between DataLad, Git LFS, and Flywheel? 377

http://handbook.datalad.org/en/latest/index.html
https://flywheel.io/
https://github.com/git-lfs/git-lfs
http://docs.datalad.org/en/latest/related.html
http://docs.datalad.org/en/latest/related.html

The DataLad Handbook, Release 0.12.0+519.g04985082

B.13 How can I copy data out of a DataLad dataset?

Moving or copying data out of a DataLad dataset is always possible and works in many cases just
like in any regular directory. The only caveat exists in the case of annexed data: If file content is
managed with git-annex and stored in the object-tree, what appears to be the file in the dataset
is merely a symlink (please read section Data integrity (page 77) for details). Moving or copying
this symlink will not yield the intended result – instead you will have a broken symlink outside
of your dataset.

When using the terminal command cp461, it is sufficient to use the -L/--dereference option.
This will follow symbolic links, and make sure that content gets moved instead of symlinks.
With tools other than cp (e.g., graphical file managers), to copy or move annexed content,
make sure it is unlocked first: After a datalad unlock copying and moving contents will work
fine. A subsequent datalad save in the dataset will annex the content again.

B.14 Is there Python 2 support for DataLad?

No, Python 2 support has been dropped in September 2019457.

B.15 Is there a graphical user interface for DataLad?

No, DataLad’s functionality is available in the command line or via it’s Python API.

Todo: maybe update this by mentioning the DataLad webapp extension

B.16 How does DataLad interface with OpenNeuro?

OpenNeuro458 is a free and open platform for sharing MRI, MEG, EEG, iEEG, and ECoG data.
It publishes hosted data as DataLad datasets on GitHub. The entire collection can be found
at github.com/OpenNeuroDatasets459. You can obtain the datasets just as any other DataLad
datasets with datalad clone or datalad install.

B.17 What is the git-annex branch?

If your DataLad dataset contains an annex, there is also a git-annex branch that is created,
used, and maintained solely by git-annex. It is completely unconnected to any other branches
in your dataset, and contains different types of log files. The contents of this branch are used
for git-annex internal tracking of the dataset and its annexed contents. For example, git-annex
stores information where file content can be retrieved from in a .log file for each object, and

461 The absolutely amazing Midnight Commander462 mc can also follow symlinks.
462 https://github.com/MidnightCommander/mc
457 https://github.com/datalad/datalad/pull/3629
458 https://openneuro.org/
459 https://github.com/OpenNeuroDatasets

B.13. How can I copy data out of a DataLad dataset? 378

https://github.com/datalad/datalad/pull/3629
https://openneuro.org/
https://github.com/OpenNeuroDatasets
https://github.com/MidnightCommander/mc

The DataLad Handbook, Release 0.12.0+519.g04985082

if the object was obtained from web-sources (e.g., with datalad download-url), a .log.web
file stores the URL. Other files in this branch store information about the known remotes of
the dataset and their description, if they have one. You can find out much more about the
git-annex branch and its contents in the documentation460. This branch, however, is managed
by git-annex, and you should not temper with it.

460 https://git-annex.branchable.com/internals/

B.17. What is the git-annex branch? 379

https://git-annex.branchable.com/internals/

380

The DataLad Handbook, Release 0.12.0+519.g04985082

APPENDIX

C

DATALAD CHEAT SHEET

Fig. 1: A high-resolution version of this cheatsheet is available for download at https://github.
com/datalad-handbook/artwork/raw/master/src/datalad-cheatsheet.pdf

381

https://github.com/datalad-handbook/artwork/raw/master/src/datalad-cheatsheet.pdf
https://github.com/datalad-handbook/artwork/raw/master/src/datalad-cheatsheet.pdf

APPENDIX

D

CONTRIBUTING

Thanks for being curious about contributing! We greatly appreciate and welcome contributions
to this book, be it in the form of an issue463, quick feedback on DataLad’s usability464, a pull
request, or a discussion you had with anyone on the team via a non-GitHub communication
channel! To find out how we acknowledge contributions, please read the paragraph Acknowl-
edging Contributors (page 388) at the bottom of this page.

If you are considering doing a pull request: Great! Every contribution is valuable, from fixing
typos to writing full chapters. The steps below outline how the book “works”. It is recommended
to also create an issue to discuss changes or additions you plan to make in advance.

D.1 Software setup

Depending on the size of your contribution, you may want to be able to build the book locally
to test and preview your changes. If you are fixing typos, tweak the language, or rewrite a
paragraph or two, this should not be necessary, and you can safely skip this paragraph and
instead take a look into the paragraph Easy pull requests (page 385). If you want to be able to
build the book locally, though, please follow these instructions:

• datalad install the repository recursively. This ensures that dependent subdatasets are
installed as well

$ datalad install -r https://github.com/datalad-handbook/book.git

• optional, but recommended: Create a virtual environment
463 https://github.com/datalad-handbook/book/issues/new
464 https://forms.gle/FkNEc7HVaZU5RTYP6

382

https://github.com/datalad-handbook/book/issues/new
https://forms.gle/FkNEc7HVaZU5RTYP6

The DataLad Handbook, Release 0.12.0+519.g04985082

$ virtualenv --python=python3 ~/env/handbook
$. ~/env/handbook/bin/activate

• install the requirements and a custom Python helper for the handbook

navigate into the installed dataset
$ cd book
install required software
$ pip install -r requirements.txt
$ pip install -e .

• install librsvg2-bin (a tool to render .svgs) with your package manager

$ sudo apt-get install librsvg2-bin

The code examples that need to be executed to build the book (see also the paragraph “Code” in
Directives and demos (page 383) to learn more about this) are executed inside of the directory
/home/me. This means that this directory needs to exist on your machine. Essentially, /home/me
is a mock directory set up in order to have identical paths in code snippets regardless of the
machine the book is build on: Else, code snippets created on one machine might have the path
/home/adina, and others created on a second machine /home/mih, for example, leading to some
potential confusion for readers. Therefore, you need to create this directory, and also – for
consistency in the Git logs as well – a separate, mock Git identity (we chose Elena Piscopia465,
the first woman to receive a PhD. Do not worry, this does not mess with your own Git identity):

$ sudo mkdir /home/me
$ sudo chown $USER:$USER /home/me
$ HOME=/home/me git config --global user.name "Elena Piscopia"
$ HOME=/home/me git config --global user.email "elena@example.net"

Once this is configured, you can build the book locally by running make in the root of the
repository, and open it in your browser, for example with firefox docs/_build/html/index.
html.

D.2 Directives and demos

If you are writing larger sections that contain code, gitusernotes, findoutmores, or other spe-
cial directives, please make sure that you read this paragraph.

The book is build with a number of custom directives. If applicable, please use them in the same
way they are used throughout the book.

Code: For code that runs inside a dataset such as DataLad-101, working directories exist in-
side of /home/me. The DataLad-101 dataset for example lives in /home/me/dl-101. This comes
with the advantage that code is tested immediately – if the code snippet contains an error,
this error will be written into the book, and thus prevent faulty commands from being pub-
lished. Running code in a working directory will furthermore build up on the existing history
of this dataset, which is very useful if some code relies on working with previously created
content or dataset history. Build code snippets that add to these working directories by us-
ing the runrecord directive. Commands wrapped in these will write the output of a com-
mand into example files stored inside of the DataLad Handbook repository clone in docs/PART/

465 https://en.wikipedia.org/wiki/Elena_Cornaro_Piscopia

D.2. Directives and demos 383

https://en.wikipedia.org/wiki/Elena_Cornaro_Piscopia

The DataLad Handbook, Release 0.12.0+519.g04985082

_examples (where PART is basics, beyond_basics, or usecases). Make sure to name these
files according to the following schema, because they are executed sequentially: _examples/
DL-101-1<nr-of-section>-1<nr-of-example>, e.g., _examples/DL-101-101-101 for the first ex-
ample in the first section of the given part. Here is how a runrecord directive can look like:

.. runrecord:: _examples/DL-101-101-101 # give the path to the resulting file, start␣
→˓with _examples

:language: console
:workdir: dl-101/DataLad-101 # specify a working directory here. This translates to␣

→˓/home/me/dl-101/DataLad-101

this is a comment
$ this line will be executed

Afterwards, the resulting example files need to be committed into Git. To clear existing examples
in docs/PART/_examples and the mock directories in /home/me, run make clean (to remove
working directories and examples for all parts of the book) or make clean-examples (to remove
only examples and workdirs of the Basics part).

However, for simple code snippets outside of the narrative of DataLad-101, simple code-block::
directives are sufficient.

Other custom directives: Other custom directives are gitusernote (for additional Git-related
information for Git-users), and findoutmore (foldable sections that contain content that goes
beyond the basics). Make use of them, if applicable to your contribution.

Creating live code demos out of runrecord directives: The book has the capability to turn
code snippets into a script that the tool cast_live466 can use to cast and execute it in a demonstra-
tion shell. This feature is intended for educational courses and other types of demonstrations.
The following prerequisites exist:

• A snippet only gets added to a cast, if the :cast: option in the runrecord specifies a
filename where to save the demo to (it does not need to be an existing file).

• If :realcommand: options are specified, they will become the executable part of the cast.
If note, the code snippet in the code-block of the runrecord will become the executable
part of the cast.

• An optional :notes: lets you add “speakernotes” for the cast.

• Demos are produced upon make, but only if the environment variable CAST_DIR is set. This
should be a path that points to any directory in which demos should be created and saved.
An invocation could look like this:

$ CAST_DIR=/home/me/casts make

This is a fully specified runrecord:

.. runrecord:: _examples/DL-101-101-101
:language: console
:workdir: dl-101/DataLad-101
:cast: dataset_basics # name of the cast file (will be created/extended in CAST_DIR)
:notes: This is an optional speaker note only visible to presenter during the cast

this is a comment and will be written to the cast
$ this line will be executed and written to the cast

466 https://github.com/datalad/datalad/blob/master/tools/cast_live

D.2. Directives and demos 384

https://github.com/datalad/datalad/blob/master/tools/cast_live

The DataLad Handbook, Release 0.12.0+519.g04985082

IMPORTANT! Code snippets will be turned into casts in the order of execution of runrecords.
If you are adding code into an existing cast, i.e., in between two snippets that get written to the
same cast, make sure that the cast will still run smoothly afterwards!

Running live code demos from created casts: If you have created a cast, you can use the tool
live_cast in tools/ in the DataLad Course467 to execute them:

~ course$ tools/cast_live path/to/casts

The section Teaching with the DataLad Handbook (page 389) outlines more on this and other
teaching materials the handbook provides.

D.3 Easy pull requests

The easiest way to do a pull request is within the web-interface that GitHub and readthedocs468

provide. If you visit the rendered version of the handbook at handbook.datalad.org469 and click
on the small, floating v:latest element at the lower right-hand side, the Edit option will take
you straight to an editor that lets you make your changes and submit a pull request.

Fig. 1: You can find an easy way to submit a pull request right from within the handbook.

But you of course are also welcome to submit a pull request with whichever other workflow
suites you best.

D.4 Desired structure of the book

The book consists of four major parts: Introduction, Basics, Beyond Basics, and Use Cases, plus
an appendix. Purpose and desired content of these parts are outlined below. When contributing
to one of these sections, please make sure that your contribution stays in the scope of the
respective section.

Introduction

• An introduction to DataLad, and the problems it aims to be a solution for.

467 https://github.com/datalad-handbook/course
468 https://readthedocs.org
469 http://handbook.datalad.org/

D.3. Easy pull requests 385

https://github.com/datalad-handbook/course
https://readthedocs.org
http://handbook.datalad.org/

The DataLad Handbook, Release 0.12.0+519.g04985082

• This part is practically free of hands-on content, i.e., no instructions, no demos. Instead,
it is about concepts, analogies, general problems.

• In order to avoid too much of a mental split between a reader’s desire to learn how to
actually do things vs. conceptual information, the introduction is purposefully kept short
and serves as a narrated table of contents with plenty of references to other parts of the
book.

Basics

• This part contains hands-on-style content on skills that are crucial for using DataLad pro-
ductively. It aims to be a continuous tutorial after which readers are able to perform the
following tasks:

– Create and populate own datasets from scratch

– Consume existing datasets

– Share datasets on shared an third party infrastructure and collaborate

– Execute commands or scripts (computationally) reproducible

– Configure datasets or DataLad operations as needed

– Use DataLad’s metadata capabilities

• The order of topics in this part is determined by the order in which they become relevant
for a novice DataLad user.

• Content should be written in a way that explicitly encourages executing the shown com-
mands, up to simple challenges (such as: “find out who the author of the first commit in
the installed subdataset XY is”).

Beyond Basics

• This part goes beyond the Basics and is a place for documenting advanced or special
purpose commands or workflows. Examples for this sections are: Introductions to special-
purpose extensions, hands-on technical documentation such as “how to write your own
DataLad extension”, or rarely encountered use cases for DataLad, such as datasets for
large-scale projects.

• This section contains chapters that are disconnected from each other, and not related to
any narrative. Readers are encouraged to read chapters or sections that fit their needs in
whichever order they prefer.

• Care should be taken to not turn content that could be a usecase into an advanced chapter.

Use Cases

• Topics that do not fit into the introduction or basics parts, but are DataLad-centric, go into
this part. Ideal content are concrete examples of how DataLad’s concepts and building
blocks can be combined to implement a solution to a problem.

• Any chapter is written as a more-or-less self-contained document that can make frequent
references to introduction and basics, but only few, and more general ones to other use

D.4. Desired structure of the book 386

The DataLad Handbook, Release 0.12.0+519.g04985082

cases. This should help with long-term maintenance of the content, as the specifics of how
to approach a particular use case optimally may evolve over time, and cross-references to
specific functionality might become invalid.

• There is no inherent order in this part, but chapters may be grouped by domain, skill-level,
or DataLad functionality involved (or combinations of those).

• Any content in this part can deviate from the examples and narrative used for introduction
and basics whenever necessary (e.g., concrete domain specific use cases). However, if
possible, common example datasets, names, terms should be adopted, and the broadest
feasible target audience should be assumed. Such more generic content should form the
early chapters in this part.

• Unless there is reason to deviate, the following structure should be adopted:

1. Summary/Abstract (no dedicated heading)

2. The Challenge: description what problem will be solved, or which conditions are
present when DataLad is not used

3. The DataLad Approach: high-level description how DataLad can be used to address
the problem at hand.

4. Step-by-Step: More detailed illustration on how the “DataLad approach” can be im-
plemented, ideally with concrete code examples.

Intersphinx mapping

The handbook tries to provide stable references to commands, concepts, and use cases for
Intersphinx Mappings470. This can help to robust-ify links – instead of long URLs that are
dependent on file or section titles, or references to numbered sections (both can break easily),
intersphinx references are meant to stick to contents and reliably point to it via a mapping in
the index471 under Symbols. An example intersphinx mapping is done in DataLad472.

The references take the following shape: .. _1-001:

The leading integer indicates the category of reference:

1: Command references
2: Concept references
3: Usecase references

The later integers are consecutively numbered in order of creation. If you want to create a new
reference, just create a reference one integer higher than the previously highest. The currently
existing intersphinx references are:

• 1-001: DataLad cheat sheet (page 381)

• 1-002: DataLad, Run! (page 52)

• 2-001: YODA: Best practices for data analyses in a dataset (page 129)

• 2-002: Data integrity (page 77)

• 2-003: DataLad’s result hooks (page 250)
470 https://www.sphinx-doc.org/en/master/usage/extensions/intersphinx.html
471 http://handbook.datalad.org/en/latest/genindex.html
472 https://github.com/datalad/datalad/pull/4046

D.4. Desired structure of the book 387

https://www.sphinx-doc.org/en/master/usage/extensions/intersphinx.html
http://handbook.datalad.org/en/latest/genindex.html
https://github.com/datalad/datalad/pull/4046

The DataLad Handbook, Release 0.12.0+519.g04985082

• 3-001: Building a scalable data storage for scientific computing (page 352)

D.5 Acknowledging Contributors

If you have helped this project, we would like to acknowledge your contribution in the GitHub
repository473 in our README with allcontributors.org474, and the project’s .zenodo475 and CON-
TRIBUTORS.md476 files. The allcontributors bot477 will give credit for various types of contri-
butions478. We may ask you to open a PR to add yourself to all of our contributing acknowl-
edgements or do it ourselves and let you know.

473 https://github.com/datalad-handbook/book
474 https://allcontributors.org/
475 https://github.com/datalad-handbook/book/blob/master/.zenodo.json
476 https://github.com/datalad-handbook/book/blob/master/CONTRIBUTORS.md
477 https://github.com/all-contributors
478 https://allcontributors.org/docs/en/emoji-key

D.5. Acknowledging Contributors 388

https://github.com/datalad-handbook/book
https://github.com/datalad-handbook/book
https://allcontributors.org/
https://github.com/datalad-handbook/book/blob/master/.zenodo.json
https://github.com/datalad-handbook/book/blob/master/CONTRIBUTORS.md
https://github.com/datalad-handbook/book/blob/master/CONTRIBUTORS.md
https://github.com/all-contributors
https://allcontributors.org/docs/en/emoji-key
https://allcontributors.org/docs/en/emoji-key

APPENDIX

E

TEACHINGWITH THE DATALAD HANDBOOK

The handbook is a free and open source educational instrument made available under a Creative
Commons Attribution-ShareAlike (CC-BY-SA) license485. We are happy if the handbook serves
as a helpful tool for other trainers, and try to provide many useful additional teaching-related
functions and contents. Below, you can find them listed:

E.1 Use the handbook as a textbook/syllabus

The Basics sections of the handbook is a stand-alone course that you can refer trainees to. Re-
gardless of background, users should be able to work through this part of the book on their
own. From our own teaching experiences, it is feasible and useful to work through any individ-
ual basics chapter in one go, and assign them as weekly or bi-weekly readings.

E.2 Use slides from the DataLad course

In parallel to the handbook, we are conducting data management workshops with attendees of
every career stage (MSc students up to PIs). The sessions are either part of a lecture series (with
bi-weekly 90 minute sessions) or workshops of different lengths. Sessions in the lecture series
are based on each chapter. Longer workshops combine several chapters. You can find the slides
for the workshops in the companion course repository479. Slides are made using reveal.js480.
They are available as PDFs in talks/PDFs/, or as the source html files in talks/.

485 CC-BY-SA means that you are free to

• share - copy and redistribute the material in any medium or format

• adapt - remix, transform, and build upon the material for any purpose, even commercially

under the following terms:

1. Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were
made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you
or your use.

2. ShareAlike — If you remix, transform, or build upon the material, you must distribute your contributions
under the same license as the original.

479 https://github.com/datalad-handbook/course
480 https://github.com/hakimel/reveal.js/

389

https://github.com/datalad-handbook/course
https://github.com/hakimel/reveal.js/

The DataLad Handbook, Release 0.12.0+519.g04985082

E.3 Enhance talks and workshops with code demos

Any number of code snippets in the handbook that are created with the runrecord directive
can be aggregated into a series of commands that can be sequentially executed as a code demo
using the cast_live481 tool provided in the companion course repository482. These code demos
allow you to remote-control a second terminal that executes the code snippets upon pressing
Enter and can provide you with simultaneous speaker notes.

A number of demos exist that accompany the slides for the data management sessions in casts,
but you can also create your own. To find out how to do this, please consult the section direc-
tives and demos483 in the contributing guide. To use the tool, download the cast_live script
and the cast_bash.rc file that accompanies it (e.g., by simply cloning/installing the course
repository), and provide a path to the demo you want to run:

$ cast_live casts/01_dataset_basics

For existing code demos, the chapter Code from chapters contains numbered lists of code snip-
pets to allow your audience to copy-paste what you execute to follow along.

E.4 Use artwork used in the handbook

The handbook’s artwork484 repository contains the sources for figures used in the handbook.

E.5 Use the handbook as a template for your own teaching material

If you want to document a different software tool in a similar way the handbook does it, please
feel free to use the handbook as a template.

481 https://github.com/datalad-handbook/course/blob/master/tools/cast_live
482 https://github.com/datalad-handbook/course
483 http://handbook.datalad.org/en/latest/contributing.html#directives-and-demos
484 https://github.com/datalad-handbook/artwork

E.3. Enhance talks and workshops with code demos 390

https://github.com/datalad-handbook/course/blob/master/tools/cast_live
https://github.com/datalad-handbook/course
http://handbook.datalad.org/en/latest/contributing.html#directives-and-demos
http://handbook.datalad.org/en/latest/contributing.html#directives-and-demos
code_from_chapters/intro.html
https://github.com/datalad-handbook/artwork

APPENDIX

F

ACKNOWLEDGEMENTS

DataLad development is supported by a US-German collaboration in computational neuro-
science (CRCNS) project “DataGit: converging catalogues, warehouses, and deployment logis-
tics into a federated ‘data distribution’” (Halchenko486/Hanke487), co-funded by the US National
Science Foundation (NSF 1429999488) and the German Federal Ministry of Education and Re-
search (BMBF 01GQ1411489). Additional support is provided by the German federal state of
Saxony-Anhalt and the European Regional Development Fund (ERDF), Project: Center for Be-
havioral Brain Sciences490, Imaging Platform. This work is further facilitated by the ReproNim
project (NIH 1P41EB019936-01A1491).

486 http://haxbylab.dartmouth.edu/ppl/yarik.html
487 https://www.psychoinformatics.de/
488 https://www.nsf.gov/awardsearch/showAward?AWD_ID=1429999
489 https://www.gesundheitsforschung-bmbf.de/de/datagit-kombination-von-katalogen-datenbanken-und-verteilungslogistik-in-eine-daten-5607.

php
490 http://cbbs.eu/en/
491 https://projectreporter.nih.gov/project_info_description.cfm?projectnumber=1P41EB019936-01A1

391

http://haxbylab.dartmouth.edu/ppl/yarik.html
https://www.psychoinformatics.de/
https://www.nsf.gov/awardsearch/showAward?AWD_ID=1429999
https://www.gesundheitsforschung-bmbf.de/de/datagit-kombination-von-katalogen-datenbanken-und-verteilungslogistik-in-eine-daten-5607.php
http://cbbs.eu/en/
http://cbbs.eu/en/
https://projectreporter.nih.gov/project_info_description.cfm?projectnumber=1P41EB019936-01A1

INDEX

Symbols
1-001, 379
1-002, 51
2-001, 129
2-002, 77
2-003, 250
2-004, 107
3-001, 351

A
absolute path, 365
adjusted branch, 365
annex, 365
annex UUID, 365

B
bare Git repositories, 365
bash, 365
Bitbucket, 365
branch, 365
broken symlink, 81

C
Chapter

1. DataLad datasets, 28
10. Advanced Options, 245
2. DataLad Run, 52
3. git-annex, 74
4. Collaboration, 83
5. Configuration, 108
6. Data analysis (YODA), 128
7. Software container, 157
8. Third party infrastructure, 170
9. Help yourself, 192

Cheatsheet, 381
checksum, 365
clone, 365
Command Line, 15
commit, 365
commit message, 365
Config files

.datalad/config, 117

.git/config, 110

.gitattributes, 114

.gitmodules, 116
container, 161

D
datalad command

addurls, 341
clone, 40
containers-add, 162
containers-list, 166
containers-remove, 166
containers-run, 162
copy-file, 347
create, 29
create-sibling-github, 150
create-sibling-gitlab, 150
create-sibling-ria, 262
datalad subdatasets, 141
diff, 59
drop, 44, 209
get, 43
install, 40
push, 150
remove, 211
rerun, 56
run, 54
run-procedure, 121
save, 32
save –to-git, 148
siblings, 101
status, 31
uninstall, 210
unlock, 66
update, 97
wtf, 231

DataLad dataset, 366
DataLad extension, 366
DataLad subdataset, 366
DataLad superdataset, 366

392

The DataLad Handbook, Release 0.12.0+519.g04985082

dataset ID, 366
Debian, 366
DOI, 366

E
environment variable, 366
environment variable, 118, 120
ephemeral clone, 366
extensions, 248
extractor, 366

F
force-push, 366

G
GIN, 366
Git, 366
git config, 109
Git config file, 367
Git identity, 13
git-annex, 366
git-annex branch, 366
GitHub, 367
Gitk, 367
GitLab, 367
globbing, 367

H
hooks, 250
http, 367
https, 367
Human Connectome Project (HCP), 340

M
Make, 300
master, 367
merge, 367
metadata, 367

N
nano, 367
nesting, 46, 157

O
object-tree, 367

P
paths, 17
permissions, 367
pip, 367
procedures, 120
provenance, 368

publication dependency, 368

R
relative path, 368
remote, 368
Remote Indexed Archive (RIA) store, 368
Remote Indexed Archive (RIA) store, 344
result hooks, 250
run procedure, 368
run record, 368
run-procedures, 120

S
sed, 368
shasum, 368
shebang, 368
Shell, 15
sibling, 369
software container, 161
special remote, 368
squash, 368
SSH, 368
SSH key, 368
SSH server, 369
stderr, 369
stdin, 369
stdout, 369
submodule, 369
symlink, 369
symlink (broken), 81

T
tab completion, 369
tab completion, 19
tag, 369
Terminal, 15
the DataLad superdataset ///, 369
tig, 369

U
Ubuntu, 369
Usecase

Basic provenance tracking, 289
Collaboration, 285
Remote Indexed Archive (RIA) store,

352
Reproducible Neuroimaging, 307
reproducible paper, 294
Scaling up: 80TB and 15 million files,

339
Student supervision, 302
Using Globus as data store, 358

Index 393

The DataLad Handbook, Release 0.12.0+519.g04985082

UUID, 369

V
version control, 370
vim, 370

Y
YODA principles, 129

Z
zsh, 370

Index 394

	I Introduction
	A brief overview of DataLad
	On Data
	The DataLad Philosophy

	How to use the handbook
	For whom this book is written
	How to read this book
	Let’s get going!

	Installation and configuration
	Install DataLad
	Initial configuration

	General prerequisites
	The Command Line
	Command Syntax
	Basic Commands
	The Prompt
	Paths
	Text Editors
	Shells
	Tab Completion

	What you really need to know
	DataLad datasets
	Simplified local version control workflows
	Consumption and collaboration
	Dataset linkage
	Full provenance capture and reproducibility
	Third party service integration
	Metadata handling
	All in all…

	II Basics
	DataLad datasets
	Create a dataset
	Populate a dataset
	Modify content
	Install datasets
	Dataset nesting
	Summary

	DataLad, Run!
	Keeping track
	DataLad, Re-Run!
	Input and output
	Clean desk
	Summary

	Under the hood: git-annex
	Data safety
	Data integrity

	Collaboration
	Looking without touching
	Where’s Waldo?
	Retrace and reenact
	Stay up to date
	Networking
	Summary

	Tuning datasets to your needs
	DIY configurations
	More on DIY configurations
	Configurations to go
	Summary

	Make the most out of datasets
	A Data Analysis Project with DataLad
	YODA: Best practices for data analyses in a dataset
	YODA-compliant data analysis projects
	Summary

	One step further
	More on Dataset nesting
	Computational reproducibility with software containers
	Summary

	Third party infrastructure
	Beyond shared infrastructure
	Dataset hosting on GIN
	Overview: Publishing datasets
	Summary

	Help yourself
	What to do if things go wrong
	Miscellaneous file system operations
	Back and forth in time
	How to get help
	Gists

	III Advanced
	Advanced options
	How to hide content from DataLad
	DataLad’s extensions
	DataLad’s result hooks
	Configure custom data access
	Remote Indexed Archives for dataset storage and backup

	Go big or go home
	Going big with DataLad
	Calculate in greater numbers
	Fixing up too-large datasets
	Summary

	IV Use cases
	A typical collaborative data management workflow
	The Challenge
	The DataLad Approach
	Step-by-Step

	Basic provenance tracking
	The Challenge
	The DataLad Approach
	Step-by-Step

	Writing a reproducible paper
	The Challenge
	The DataLad Approach
	Step-by-Step
	Automation with existing tools

	Student supervision in a research project
	The Challenge
	The DataLad Approach
	Step-by-Step

	An automatically and computationally reproducible neuroimaging analysis from scratch
	The Challenge
	The DataLad Approach
	Step-by-Step

	Scaling up: Managing 80TB and 15 million files from the HCP release
	The Challenge
	The DataLad Approach
	Step-by-Step

	Building a scalable data storage for scientific computing
	The Challenge
	The DataLad approach
	Step-by-step

	Using Globus as a data store for the Canadian Open Neuroscience Portal
	The Challenge
	The Datalad Approach
	Step-by-Step
	Resources

	Contributing

	V Appendix
	Glossary
	Frequently Asked Questions
	What is Git?
	Where is Git’s “staging area” in DataLad datasets?
	What is git-annex?
	What does DataLad add to Git and git-annex?
	Does DataLad host my data?
	How does GitHub relate to DataLad?
	What is the difference between a superdataset, a subdataset, and a dataset?
	How can I convert/import/transform an existing Git or git-annex repository into a DataLad dataset?
	How can I cite DataLad?
	How can I help others get started with a shared dataset?
	What is the difference between DataLad, Git LFS, and Flywheel?
	DataLad version-controls my large files – great. But how much is saved in total?
	How can I copy data out of a DataLad dataset?
	Is there Python 2 support for DataLad?
	Is there a graphical user interface for DataLad?
	How does DataLad interface with OpenNeuro?
	What is the git-annex branch?

	DataLad cheat sheet
	Contributing
	Software setup
	Directives and demos
	Easy pull requests
	Desired structure of the book
	Acknowledging Contributors

	Teaching with the DataLad Handbook
	Use the handbook as a textbook/syllabus
	Use slides from the DataLad course
	Enhance talks and workshops with code demos
	Use artwork used in the handbook
	Use the handbook as a template for your own teaching material

	Acknowledgements
	Index

